[1] CHEN Y Y, CHEN Y J, ZHANG Y H, et al. Determination of HFRs and OPFRs in PM2.5 by ultrasonic-assisted extraction combined with multi-segment column purification and GC-MS/MS [J]. Talanta, 2019, 194: 320-328. doi: 10.1016/j.talanta.2018.10.025
[2] MÖLLER A, STURM R, XIE Z Y, et al. Organophosphorus flame retardants and plasticizers in airborne particles over the northern Pacific and Indian ocean toward the polar regions: Evidence for global occurrence [J]. Environmental Science & Technology, 2012, 46(6): 3127-3134.
[3] HAO C Y, HELM P A, MORSE D, et al. Liquid chromatography-tandem mass spectrometry direct injection analysis of organophosphorus flame retardants in Ontario surface water and wastewater effluent [J]. Chemosphere, 2018, 191: 288-295. doi: 10.1016/j.chemosphere.2017.10.060
[4] PANTELAKI I, VOUTSA D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment [J]. Science of the Total Environment, 2019, 649: 247-263. doi: 10.1016/j.scitotenv.2018.08.286
[5] PANG L, YUAN Y T, HE H, et al. Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China [J]. Chemosphere, 2016, 152: 245-251. doi: 10.1016/j.chemosphere.2016.02.104
[6] LORENZO M, CAMPO J, PICÓ Y. Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry [J]. Journal of Separation Science, 2018, 41(12): 2595-2603. doi: 10.1002/jssc.201701461
[7] LUO Q, SHAN Y, MUHAMMAD A, et al. Levels, distribution, and sources of organophosphate flame retardants and plasticizers in urban soils of Shenyang, China [J]. Environmental Science and Pollution Research, 2018, 25(31): 31752-31761. doi: 10.1007/s11356-018-3156-y
[8] NACCARATO A, TASSONE A, MORETTI S, et al. A green approach for organophosphate ester determination in airborne particulate matter: Microwave-assisted extraction using hydroalcoholic mixture coupled with solid-phase microextraction gas chromatography-tandem mass spectrometry [J]. Talant, 2018, 189: 657-665. doi: 10.1016/j.talanta.2018.07.077
[9] THU H T, DUC C N, THI H L, et al. Determination of organophosphate ester flame retardants in indoor dust and their potential health exposure risk [J]. Vietnam Journal of Chemistry, 2020, 58(6): 723-730.
[10] GILL R, HURLEY S, BROWN R, et al. Polybrominated diphenyl ether and organophosphate flame retardants in canadian fire station dust [J]. Chemosphere, 2020, 253: 126669. doi: 10.1016/j.chemosphere.2020.126669
[11] de la TORRE A, NAVARRO I, SANZ P, et al. Organophosphate compounds, polybrominated diphenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure [J]. Journal of Hazardous Materials, 2020, 382: 121009. doi: 10.1016/j.jhazmat.2019.121009
[12] GAO X Z, XU Y P, MA M, et al. Distribution, sources and transport of organophosphorus flame retardants in the water and sediment of Ny- Ålesund;lesund, Svalbard, the Arctic [J]. Environmental Pollution, 2020, 264: 114792. doi: 10.1016/j.envpol.2020.114792
[13] LI P, JIN J, WANG Y, et al. Concentrations of organophosphorus, polybromobenzene, and polybrominated diphenyl ether flame retardants in human serum, and relationships between concentrations and donor ages [J]. Chemosphere, 2017, 171: 654-660. doi: 10.1016/j.chemosphere.2016.12.126
[14] VEEN I V D, BOER J D. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
[15] CHEN Y X, LIU Q Y, MA J, et al. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure [J]. Chemosphere, 2020, 260: 127633. doi: 10.1016/j.chemosphere.2020.127633
[16] LI M Q, YAO Y M, WANG Y, et al. Organophosphate ester flame retardants and plasticizers in a Chinese population: Significance of hydroxylated metabolites and implication for human exposure [J]. Environmental Pollution, 2020, 257: 113633. doi: 10.1016/j.envpol.2019.113633
[17] SANCHEZ-PINERO J, BOWERBANK S L, MOREDA-PINEIOR J, et al. The occurrence and distribution of polycyclic aromatic hydrocarbons, bisphenol A and organophosphate flame retardants in indoor dust and soils from public open spaces: Implications for human exposure [J]. Environmental Pollution, 2020, 266(Pt1): 115372.
[18] van den EEDE N, DIRTU A C, NEELS H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust [J]. Environment International, 2011, 37(2): 454-461. doi: 10.1016/j.envint.2010.11.010
[19] LUO D, LIU W, WU W X, et al. Trimester-specific effects of maternal exposure to organophosphate flame retardants on offspring size at birth: A prospective cohort study in China [J]. Journal of Hazardous Materials, 2020, 406: 124754.
[20] YAO Y M, LI M Q, PAN L Y, et al. Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: Thyroid endocrine disruption and mediation role of oxidative stress [J]. Environment International, 2021, 146: 106215. doi: 10.1016/j.envint.2020.106215
[21] AL-SALEM A M, SAQUIB Q, SIDDIQUI M A, et al. Organophosphorus flame retardant (tricresyl phosphate) trigger apoptosis in HepG2 cells: Transcriptomic evidence on activation of human cancer pathways [J]. Chemosphere, 2019, 237: 124519. doi: 10.1016/j.chemosphere.2019.124519
[22] 李锦, 张占恩, 陈鑫, 等. 超声提取-分散液相微萃取-气相色谱质谱法测定大气PM2.5中15种邻苯二甲酸酯 [J]. 环境化学, 2017, 36(1): 183-189. doi: 10.7524/j.issn.0254-6108.2017.01.2016051302 LI J, ZHANG Z N, CHEN X, et al. Determination of fifteen phthalate esters in air particulate matter (PM2.5) by ultrasonic extraction-dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry [J]. Environmental Chemistry, 2017, 36(1): 183-189(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051302
[23] COCHRAN R E, KUBÁTOVÁ A. Pressurised fluid extraction of polycyclic aromatic hydrocarbons and their polar oxidation products from atmospheric particles [J]. International Journal of Environmental Analytical Chemistry, 2015, 95(5): 434-452. doi: 10.1080/03067319.2015.1025225
[24] RAMOS-CONTRERAS C, CONCHA-GRAÑA E, LÓPEZ-MAHÍA P, et al. Determination of atmospheric particle-bound polycyclic aromatic hydrocarbons using subcritical water extraction coupled with membrane microextraction [J]. Journal of Chromatography. A, 2019, 1606: 460381. doi: 10.1016/j.chroma.2019.460381
[25] COSCOLLÀ C, YUSÀ V, MARTÍ P, et al. Analysis of currently used pesticides in fine airborne particulate matter (PM2.5) by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography. A, 2008, 1200(2): 100-107. doi: 10.1016/j.chroma.2008.05.075
[26] FERNÁNDEZ-AMADO M, PRIETO-BLANCO M C, LÓPEZ-MAHÍA P, et al. Ion-pair in-tube solid phase microextraction for the simultaneous determination of phthalates and their degradation products in atmospheric particulate matter [J]. Journal of Chromatography. A, 2017, 1520: 35-47. doi: 10.1016/j.chroma.2017.09.010
[27] GARCÍA-LÓPEZ M, RODRÍGUEZ I, CELA R. Development of a dispersive liquid-liquid microextraction method for organophosphorus flame retardants and plastizicers determination in water samples [J]. Journal of Chromatography. A, 2007, 1166(1/2): 9-15.
[28] YAN H Y, WANG H, QIN X Y, et al. Ultrasound-assisted dispersive liquid-liquid microextraction for determination of fluoroquinolones in pharmaceutical wastewater [J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54(1): 53-57. doi: 10.1016/j.jpba.2010.08.007