[1] MILLS L J, CHICHESTER C. Review of evidence: Are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? [J]. Science of the Total Environment, 2005, 343(1/2/3): 1-34.
[2] VOS J G, DYBING E, GREIM H A, et al. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation [J]. Critical Reviews in Toxicology, 2000, 30(1): 71-133. doi: 10.1080/10408440091159176
[3] ZUO Y G, ZHANG K, ZHOU S. Determination of estrogenic steroids and microbial and photochemical degradation of 17α-ethinylestradiol (EE2) in lake surface water, a case study [J]. Environmental Science. Processes & Impacts, 2013, 15(8): 1529-1535.
[4] ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution [J]. Environmental Science & Technology, 2018, 52(18): 10391-10399.
[5] PAPAEVANGELOU V A, GIKAS G D, TSIHRINTZIS V A, et al. Removal of Endocrine Disrupting Chemicals in HSF and VF pilot-scale constructed wetlands [J]. Chemical Engineering Journal, 2016, 294: 146-156. doi: 10.1016/j.cej.2016.02.103
[6] 李晓曼, 黄斌, 孙雯雯, 等. 类固醇雌激素环境行为研究进展 [J]. 环境化学, 2014, 33(8): 1276-1286. doi: 10.7524/j.issn.0254-6108.2014.08.022 LI X M, HUANG B, SUN W W, et al. Research progress on the environmental behavior of steroid estrogens [J]. Environmental Chemistry, 2014, 33(8): 1276-1286(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.08.022
[7] ONDA K, NAKAMURA Y, TAKATOH C, et al. The behavior of estrogenic substances in the biological treatment process of sewage [J]. Water Science and Technology, 2003, 47(9): 109-116. doi: 10.2166/wst.2003.0504
[8] TABATA A, KASHIWADA S, OHNISHI Y, et al. Estrogenic influences of estradiol-17 beta, p-nonylphenol and bis-phenol-A on Japanese medaka (Oryzias latipes) at detected environmental concentrations [J]. Water Science and Technology, 2001, 43(2): 109-116. doi: 10.2166/wst.2001.0079
[9] KUCH H M, BALLSCHMITER K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC–(NCI)–MS in the picogram per liter range [J]. Environmental Science & Technology, 2001, 35(15): 3201-3206.
[10] YING G G, KOOKANA R S, RU Y J. Occurrence and fate of hormone steroids in the environment [J]. Environment International, 2002, 28(6): 545-551. doi: 10.1016/S0160-4120(02)00075-2
[11] METCALFE C D, METCALFE T L, KIPARISSIS Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes) [J]. Environmental Toxicology and Chemistry, 2001, 20(2): 297-308. doi: 10.1002/etc.5620200210
[12] MA L, YATES S R. Dissolved organic matter and estrogen interactions regulate estrogen removal in the aqueous environment: A review [J]. Science of the Total Environment, 2018, 640/641: 529-542. doi: 10.1016/j.scitotenv.2018.05.301
[13] WRITER J H, RYAN J N, KEEFE S H, et al. Fate of 4-nonylphenol and 17β-estradiol in the redwood river of Minnesota [J]. Environmental Science & Technology, 2012, 46(2): 860-868.
[14] 马哲, 王杰琼, 陈景文, 等. pH对不同来源溶解性有机质光致生成活性物种量子产率的影响 [J]. 环境化学, 2017, 36(9): 1889-1895. doi: 10.7524/j.issn.0254-6108.2017012301 MA Z, WANG J Q, CHEN J W, et al. Effect of pH on the quantum yield of reactive photo-induced species generated in different sources of DOM [J]. Environmental Chemistry, 2017, 36(9): 1889-1895(in Chinese). doi: 10.7524/j.issn.0254-6108.2017012301
[15] WANG X H, YAO J Y, WANG S Y, et al. Phototransformation of estrogens mediated by Mn(Ⅲ), not by reactive oxygen species, in the presence of humic acids [J]. Chemosphere, 2018, 201: 224-233. doi: 10.1016/j.chemosphere.2018.03.003
[16] SILVA C P, LIMA D L D, OTERO M, et al. Photosensitized degradation of 17β-estradiol and 17α-ethinylestradiol: Role of humic substances fractions [J]. Journal of Environmental Quality, 2016, 45(2): 693-700. doi: 10.2134/jeq2015.07.0396
[17] GURR C J, REINHARD M. Harnessing natural attenuation of pharmaceuticals and hormones in rivers [J]. Environmental Science & Technology, 2006, 40(9): 2872-2876.
[18] SENESI N, XING B, HUANG P M. Biophysico-chemical processes involving natural nonliving organic matter in environmental systems//formation mechanisms of humic substances in the environment[M]. John Wiley & Sons, 2009: 41-109.
[19] MÜNSTER U, HEIKKINEN E, SALONEN K, et al. Tracing of peroxidase activity in humic lake water [J]. Acta Hydrochimica et Hydrobiologica, 1998, 26(3): 158-166. doi: 10.1002/(SICI)1521-401X(199805)26:3<158::AID-AHEH158>3.0.CO;2-Q
[20] BUCK U, BABENZIEN H D, ZWIRNMANN E. Extracellular peroxidase activity in an experimentally divided lake (Große Fuchskuhle, northern Germany) [J]. Aquatic Microbial Ecology, 2008, 51: 97-103. doi: 10.3354/ame01188
[21] LU J H, HUANG Q G, MAO L. Removal of acetaminophen using enzyme-mediated oxidative coupling processes: I. reaction rates and pathways [J]. Environmental Science & Technology, 2009, 43(18): 7062-7067.
[22] LI J H, ZHANG Y, PENG J B, et al. The effect of dissolved organic matter on soybean peroxidase-mediated removal of triclosan in water [J]. Chemosphere, 2017, 172: 399-407. doi: 10.1016/j.chemosphere.2017.01.013
[23] MAO L, HUANG Q G, LU J H, et al. Ligninase-mediated removal of natural and synthetic estrogens from water: I. reaction behaviors [J]. Environmental Science & Technology, 2009, 43(2): 374-379.
[24] LI J H, ZHANG Y, HUANG Q G, et al. Degradation of organic pollutants mediated by extracellular peroxidase in simulated sunlit humic waters: A case study with 17β-estradiol [J]. Journal of Hazardous Materials, 2017, 331: 123-131. doi: 10.1016/j.jhazmat.2017.02.033
[25] XU L P, LI H, MITCH W A, et al. Enhanced phototransformation of tetracycline at smectite clay surfaces under simulated sunlight via a lewis-base catalyzed alkalization mechanism [J]. Environmental Science & Technology, 2019, 53(2): 710-718.
[26] SHI H H, WANG G W, HUANG Q G, et al. The mutual promotion of photolysis and laccase-catalysis on removal of dichlorophen from water under simulated sunlight irradiation [J]. Chemical Engineering Journal, 2018, 338: 392-400. doi: 10.1016/j.cej.2018.01.026
[27] YAN S W, SONG W H. Photo-transformation of pharmaceutically active compounds in the aqueous environment: A review [J]. Environmental Science. Processes & Impacts, 2014, 16(4): 697-720.
[28] 唐乾, 宫婷婷, 曹洪玉, 等. 光诱导辣根过氧化物酶催化活性变化及机理研究 [J]. 光谱学与光谱分析, 2018, 38(12): 3692-3698. TANG Q, GONG T T, CAO H Y, et al. Mechanism of the variation of horseradish peroxidase catalytic activity induced by light [J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3692-3698(in Chinese).
[29] BOREEN A L, EDHLUND B L, COTNER J B, et al. Indirect photodegradation of dissolved free amino acids: The contribution of singlet oxygen and the differential reactivity of DOM from various sources [J]. Environmental Science & Technology, 2008, 42(15): 5492-5498.
[30] IPE B I, NIEMEYER C M. Nanohybride aus Quantenpunkten und Cytochrom P450 als Photokatalysatoren [J]. Angewandte Chemie, 2006, 118(3): 519-522. doi: 10.1002/ange.200503084
[31] FRUK L, RAJENDRAN V, SPENGLER M, et al. Light-induced triggering of peroxidase activity using quantum dots [J]. Chembiochem, 2007, 8(18): 2195-2198. doi: 10.1002/cbic.200700594
[32] ZHANG S Y, CHEN J W, QIAO X L, et al. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-phenylbenzimidazole-5-sulfonic acid [J]. Environmental Science & Technology, 2010, 44(19): 7484-7490.
[33] JI Y F, ZHOU L, ZHANG Y, et al. Photochemical degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid in different water matrices [J]. Water Research, 2013, 47(15): 5865-5875. doi: 10.1016/j.watres.2013.07.009
[34] ZHANG Y, del VECCHIO R, BLOUGH N V. Investigating the mechanism of hydrogen peroxide photoproduction by humic substances [J]. Environmental Science & Technology, 2012, 46(21): 11836-11843.
[35] 周磊. 天然水体中防晒剂对氨基苯甲酸和碳纳米管的光化学行为研究[D]. 南京: 南京大学, 2014. ZHOU L. Photochemical behavior of sunscreen agent p-aminobenzoic acid and carbon nanotubes in natural waters[D]. Nanjing: Nanjing University, 2014(in Chinese).
[36] ARNAO M B, ACOSTA M, del RÍO J A, et al. A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide [J]. Biochimica et Biophysica Acta, 1990, 1041(1): 43-47. doi: 10.1016/0167-4838(90)90120-5