[1] BRAUER M, AMANN M, BURNETT R T, et al. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution [J]. Environmental Science & Technology, 2012, 46(2): 652-660.
[2] BRAUER M, FREEDMAN G, FROSTAD J, et al. Ambient air pollution exposure estimation for the global burden of disease 2013 [J]. Environmental Science & Technology, 2016, 50(1): 79-88.
[3] WEST J J, COHEN A, DENTENER F, et al. “What we breathe impacts our health: Improving understanding of the link between air pollution and health” [J]. Environmental Science & Technology, 2016, 50(10): 4895-4904.
[4] KREUZER L B, PATEL C K N. Nitric oxide air pollution: Detection by optoacoustic spectroscopy [J]. Science, 1971, 173(3991): 45-47. doi: 10.1126/science.173.3991.45
[5] GÓMEZ ALVAREZ E, WORTHAM H, STREKOWSKI R, et al. Atmospheric photosensitized heterogeneous and multiphase reactions: From outdoors to indoors [J]. Environmental Science & Technology, 2012, 46(4): 1955-1963.
[6] LIANG S, LIU Z, CRAWFORD-BROWN D, et al. Decoupling analysis and socioeconomic drivers of environmental pressure in China [J]. Environmental Science & Technology, 2014, 48(2): 1103-1113.
[7] TIAN H Z, LIU K Y, HAO J M, et al. Nitrogen oxides emissions from thermal power plants in China: Current status and future predictions [J]. Environmental Science & Technology, 2013, 47(19): 11350-11357.
[8] DAI W R, TAO Y, ZOU H H, et al. Gas-phase photoelectrocatalytic oxidation of NO via TiO2 nanorod array/FTO photoanodes [J]. Environmental Science & Technology, 2020, 54(9): 5902-5912.
[9] XIAO S N, WAN Z, ZHOU J C, et al. Gas-phase photoelectrocatalysis for breaking down nitric oxide [J]. Environmental Science & Technology, 2019, 53(12): 7145-7154.
[10] GRANGER P, PARVULESCU V I. Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies [J]. Chemical Reviews, 2011, 111(5): 3155-3207. doi: 10.1021/cr100168g
[11] GUO Q B, SUN T H, WANG Y L, et al. Spray absorption and electrochemical reduction of nitrogen oxides from flue gas [J]. Environmental Science & Technology, 2013, 47(16): 9514-9522.
[12] HEO I, KIM M K, SUNG S, et al. Combination of photocatalysis and HC/SCR for improved activity and durability of deNOx catalysts [J]. Environmental Science & Technology, 2013, 47(8): 3657-3664.
[13] TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials: Possibilities and challenges [J]. Advanced Materials, 2012, 24(2): 229-251. doi: 10.1002/adma.201102752
[14] CHEN X, CAI Y, LIANG R, et al. NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis [J]. Applied Catalysis B:Environmental, 2020, 267: 118687. doi: 10.1016/j.apcatb.2020.118687
[15] JIN S, DONG G, LUO J, et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst [J]. Applied Catalysis B:Environmental, 2018, 227: 24-34. doi: 10.1016/j.apcatb.2018.01.020
[16] LI J, DONG X A, SUN Y, et al. Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning [J]. Applied Catalysis B:Environmental, 2018, 239: 187-195. doi: 10.1016/j.apcatb.2018.08.019
[17] LI X, ZHANG W, CUI W, et al. Bismuth spheres assembled on graphene oxide: Directional charge transfer enhances plasmonic photocatalysis and in situ DRIFTS studies [J]. Applied Catalysis B:Environmental, 2018, 221: 482-489. doi: 10.1016/j.apcatb.2017.09.046
[18] LUO J, DONG G, ZHU Y, et al. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4 [J]. Applied Catalysis B:Environmental, 2017, 214: 46-56. doi: 10.1016/j.apcatb.2017.05.016
[19] SUGRA EZ R, BALBUENA J, CRUZ-YUSTA M, et al. Efficient behaviour of hematite towards the photocatalytic degradation of NO gases [J]. Applied Catalysis B:Environmental, 2015, 165: 529-536. doi: 10.1016/j.apcatb.2014.10.025
[20] WANG Z, HUANG Y, HO W, et al. Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study [J]. Applied Catalysis B:Environmental, 2016, 199: 123-133. doi: 10.1016/j.apcatb.2016.06.027
[21] ZHANG R Y, RAN T, CAO Y H, et al. Surface hydrogen atoms promote oxygen activation for solar light-driven NO oxidization over monolithic α-Ni(OH)2/Ni foam [J]. Environmental Science & Technology, 2020, 54(24): 16221-16230.
[22] HE W, SUN Y, JIANG G, et al. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: Photocatalysis mechanism and reaction pathway [J]. Applied Catalysis B:Environmental, 2018, 232: 340-347. doi: 10.1016/j.apcatb.2018.03.047
[23] HUANG Y, GAO Y, ZHANG Q, et al. Biocompatible FeOOH-carbon quantum dots nanocomposites for gaseous NOx removal under visible light: Improved charge separation and high selectivity [J]. Journal of Hazardous Materials, 2018, 354: 54-62. doi: 10.1016/j.jhazmat.2018.04.071
[24] ZHOU M, DONG G, MA J, et al. Photocatalytic removal of NO by intercalated carbon nitride: The effect of group IIA element ions [J]. Applied Catalysis B:Environmental, 2020, 273: 119007. doi: 10.1016/j.apcatb.2020.119007
[25] CHEN X, ZHANG H, ZHANG D, et al. Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation [J]. Applied Surface Science, 2018, 435: 468-475. doi: 10.1016/j.apsusc.2017.11.045
[26] LI Y, SUN Y, HO W, et al. Highly enhanced visible-light photocatalytic NOx purification and conversion pathway on self-structurally modified g-C3N4 nanosheets [J]. Science Bulletin, 2018, 63(10): 609-620. doi: 10.1016/j.scib.2018.04.009
[27] HUO W C, DONG X A, LI J Y, et al. Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study [J]. Chemical Engineering Journal, 2019, 361: 129-138. doi: 10.1016/j.cej.2018.12.071
[28] LI J, CHEN R, CEN W, et al. Quantifying the activation energies of ROS-induced NOx conversion: Suppressed toxic intermediates generation and clarified reaction mechanism [J]. Chemical Engineering Journal, 2019, 375: 122026. doi: 10.1016/j.cej.2019.122026
[29] JIANG G, LI X, LAN M, et al. Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: Enhanced visible-light-response photocatalytic NO removal and reaction pathway [J]. Applied Catalysis B:Environmental, 2017, 205: 532-540. doi: 10.1016/j.apcatb.2017.01.009
[30] CHEN M, HUANG Y, YAO J, et al. Visible-light-driven N-(BiO)2CO3/graphene oxide composites with improved photocatalytic activity and selectivity for NOx removal [J]. Applied Surface Science, 2018, 430: 137-144. doi: 10.1016/j.apsusc.2017.06.056
[31] CHEN M, LI X, HUANG Y, et al. Synthesis and characterization of Bi-BiPO4 nanocomposites as plasmonic photocatalysts for oxidative NO removal [J]. Applied Surface Science, 2020, 513: 145775. doi: 10.1016/j.apsusc.2020.145775
[32] HUANG Y, GAO Y, ZHANG Q, et al. Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NO removal studies [J]. Applied Catalysis A:General, 2016, 515: 170-178. doi: 10.1016/j.apcata.2016.02.007
[33] JIANG G, CAO J, CHEN M, et al. Photocatalytic NO oxidation on n-doped TiO2/g-C3N4 heterojunction: Enhanced efficiency, mechanism and reaction pathway [J]. Applied Surface Science, 2018, 458: 77-85. doi: 10.1016/j.apsusc.2018.07.087
[34] LI X, SHI H, WANG T, et al. Photocatalytic removal of NO by z-scheme mineral based heterojunction intermediated by carbon quantum dots [J]. Applied Surface Science, 2018, 456: 835-844. doi: 10.1016/j.apsusc.2018.06.133
[35] CUI W, LI J, CEN W, et al. Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: Enhanced photocatalysis and reaction mechanism [J]. Journal of Catalysis, 2017, 352: 351-360. doi: 10.1016/j.jcat.2017.05.017
[36] UNER D, BAYAR I, TABARI T. The influence of relative humidity on photocatalytic oxidation of nitric oxide (NO) over TiO2 [J]. Applied Surface Science, 2015, 354: 260-266. doi: 10.1016/j.apsusc.2015.07.045
[37] ZOU Y, XIE Y, YU S, et al. SnO2 quantum dots anchored on g-C3N4 for enhanced visible-light photocatalytic removal of NO and toxic NO2 inhibition [J]. Applied Surface Science, 2019, 496: 143630. doi: 10.1016/j.apsusc.2019.143630
[38] DONG F, WANG Z Y, LI Y H, et al. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination [J]. Environmental Science & Technology, 2014, 48(17): 10345-10353.
[39] ZHANG Z, XU M, HO W, et al. Simultaneous excitation of PdCl2 hybrid mesoporous g-C3N4 molecular/solid-state photocatalysts for enhancing the visible-light-induced oxidative removal of nitrogen oxides [J]. Applied Catalysis B:Environmental, 2016, 184: 174-181. doi: 10.1016/j.apcatb.2015.11.034
[40] DING X, HO W, SHANG J, et al. Self doping promoted photocatalytic removal of NO under visible light with Bi2MoO6: Indispensable role of superoxide ions [J]. Applied Catalysis B:Environmental, 2016, 182: 316-325. doi: 10.1016/j.apcatb.2015.09.046
[41] SHEN X, DONG G, WANG L, et al. Enhancing photocatalytic activity of NO removal through an in situ control of oxygen vacancies in growth of TiO2 [J]. Advanced Materials Interfaces, 2019, 6(19): 1901032. doi: 10.1002/admi.201901032
[42] MA J Z, WU H M, LIU Y C, et al. Photocatalytic removal of NOx over visible light responsive oxygen-deficient TiO2 [J]. The Journal of Physical Chemistry C, 2014, 118(14): 7434-7441. doi: 10.1021/jp500116n
[43] SHAO M, LIU J J, DING W J, et al. Oxygen vacancy engineering of self-doped SnO2−x nanocrystals for ultrasensitive NO2 detection [J]. Journal of Materials Chemistry C, 2020, 8(2): 487-494. doi: 10.1039/C9TC05705F
[44] YU S, ZHANG Y, DONG F, et al. Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance [J]. Applied Catalysis B:Environmental, 2018, 226: 441-450. doi: 10.1016/j.apcatb.2017.12.074
[45] ZHANG Q, HUANG Y, PENG S, et al. Synthesis of SrFexTi1-xO3-δ nanocubes with tunable oxygen vacancies for selective and efficient photocatalytic NO oxidation [J]. Applied Catalysis B:Environmental, 2018, 239: 1-9. doi: 10.1016/j.apcatb.2018.07.076
[46] SHANG H, LI M Q, LI H, et al. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation [J]. Environmental Science & Technology, 2019, 53(11): 6444-6453.
[47] CUI W, CHEN L, LI J, et al. Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4 [J]. Applied Catalysis B:Environmental, 2019, 253: 293-299. doi: 10.1016/j.apcatb.2019.04.070
[48] LIU G, HUANG Y, LV H, et al. Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion [J]. Applied Catalysis B:Environmental, 2021, 284: 119683. doi: 10.1016/j.apcatb.2020.119683
[49] LI Y, HO W, LV K, et al. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets [J]. Applied Surface Science, 2018, 430: 380-389. doi: 10.1016/j.apsusc.2017.06.054
[50] DONG G, ZHAO L, WU X, et al. Photocatalysis removing of NO based on modified carbon nitride: The effect of celestite mineral particles [J]. Applied Catalysis B:Environmental, 2019, 245: 459-468. doi: 10.1016/j.apcatb.2019.01.013
[51] YU J C C, NGUYEN V H, LASEK J, et al. Titania nanosheet photocatalysts with dominantly exposed (001) reactive facets for photocatalytic NOx abatement [J]. Applied Catalysis B:Environmental, 2017, 219: 391-400. doi: 10.1016/j.apcatb.2017.07.077
[52] XIA D, HU L, WANG Y, et al. Immobilization of facet-engineered Ag3PO4 on mesoporous Al2O3 for efficient industrial waste gas purification with indoor LED illumination [J]. Applied Catalysis B:Environmental, 2019, 256: 117811. doi: 10.1016/j.apcatb.2019.117811
[53] LI H, SHANG H, LI Y H, et al. Interfacial charging-decharging strategy for efficient and selective aerobic NO oxidation on oxygen vacancy [J]. Environmental Science & Technology, 2019, 53(12): 6964-6971.
[54] WANG H, ZHANG W, LI X, et al. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres [J]. Applied Catalysis B:Environmental, 2018, 225: 218-227. doi: 10.1016/j.apcatb.2017.11.079
[55] HE W, SUN Y, JIANG G, et al. Defective Bi4MoO9/Bi metal core/shell heterostructure: Enhanced visible light photocatalysis and reaction mechanism [J]. Applied Catalysis B:Environmental, 2018, 239: 619-627. doi: 10.1016/j.apcatb.2018.08.064
[56] LI X, ZHANG W, LI J, et al. Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3 [J]. Applied Catalysis B:Environmental, 2019, 241: 187-195. doi: 10.1016/j.apcatb.2018.09.032
[57] CHEN P, LIU H, SUN Y, et al. Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement [J]. Applied Catalysis B:Environmental, 2020, 264: 118545. doi: 10.1016/j.apcatb.2019.118545
[58] WANG S, DING X, YANG N, et al. Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal [J]. Applied Catalysis B:Environmental, 2020, 265: 118585. doi: 10.1016/j.apcatb.2019.118585
[59] DONG X A, LI J, XING Q, et al. The activation of reactants and intermediates promotes the selective photocatalytic NO conversion on electron-localized Sr-intercalated g-C3N4 [J]. Applied Catalysis B:Environmental, 2018, 232: 69-76. doi: 10.1016/j.apcatb.2018.03.054
[60] ZHOU M, DONG G, YU F, et al. The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method [J]. Applied Catalysis B:Environmental, 2019, 256: 117825. doi: 10.1016/j.apcatb.2019.117825
[61] SONG X, QIN G, CHENG G, et al. Oxygen defect-induced NO intermediates promoting NO deep oxidation over Ce doped SnO2 under visible light [J]. Applied Catalysis B:Environmental, 2021, 284: 119761. doi: 10.1016/j.apcatb.2020.119761
[62] DUAN Y, ZHANG M, WANG L, et al. Plasmonic Ag-TiO2−x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies [J]. Applied Catalysis B:Environmental, 2017, 204: 67-77. doi: 10.1016/j.apcatb.2016.11.023
[63] CUI W, LI J, SUN Y, et al. Enhancing ROS generation and suppressing toxic intermediate production in photocatalytic NO oxidation on O/Ba co-functionalized amorphous carbon nitride [J]. Applied Catalysis B:Environmental, 2018, 237: 938-946. doi: 10.1016/j.apcatb.2018.06.071
[64] DUAN Y, LUO J, ZHOU S, et al. TiO2-supported ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO [J]. Applied Catalysis B:Environmental, 2018, 234: 206-212. doi: 10.1016/j.apcatb.2018.04.041
[65] CAO J, ZHANG J, DONG X A, et al. Defective Borate-decorated polymer carbon nitride: Enhanced photocatalytic NO removal, synergy effect and reaction pathway [J]. Applied Catalysis B:Environmental, 2019, 249: 266-274. doi: 10.1016/j.apcatb.2019.03.012
[66] XIONG T, WEN M, DONG F, et al. Three dimensional z-scheme (BiO)2CO3/MoS2 with enhanced visible light photocatalytic NO removal [J]. Applied Catalysis B:Environmental, 2016, 199: 87-95. doi: 10.1016/j.apcatb.2016.06.032
[67] ZHANG Q, HUANG Y, PENG S, et al. Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation [J]. Applied Catalysis B:Environmental, 2017, 204: 346-357. doi: 10.1016/j.apcatb.2016.11.052
[68] HU J, CHEN D, LI N, et al. In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation [J]. Applied Catalysis B:Environmental, 2017, 217: 224-231. doi: 10.1016/j.apcatb.2017.05.088
[69] HUANG Y, ZHU D, ZHANG Q, et al. Synthesis of a Bi2O2CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal [J]. Applied Catalysis B:Environmental, 2018, 234: 70-78. doi: 10.1016/j.apcatb.2018.04.039
[70] SHI X, WANG P, LI W, et al. Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3 adsorption [J]. Applied Catalysis B:Environmental, 2019, 243: 322-329. doi: 10.1016/j.apcatb.2018.10.037
[71] CUI W, CHEN L, SHENG J, et al. The pivotal roles of spatially separated charge localization centers on the molecules activation and photocatalysis mechanism [J]. Applied Catalysis B:Environmental, 2020, 262: 118251. doi: 10.1016/j.apcatb.2019.118251
[72] GENG Y, CHEN D, LI N, et al. Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide [J]. Applied Catalysis B:Environmental, 2021, 280: 119409. doi: 10.1016/j.apcatb.2020.119409
[73] DONG F, XIONG T, YAN S, et al. Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCl nanosheets [J]. Journal of Catalysis, 2016, 344: 401-410. doi: 10.1016/j.jcat.2016.10.005
[74] CHEN P, SUN Y J, LIU H J, et al. Facet-dependent photocatalytic NO conversion pathways predetermined by adsorption activation patterns [J]. Nanoscale, 2019, 11(5): 2366-2373. doi: 10.1039/C8NR09147A
[75] LIAO J, CHEN L, SUN M, et al. Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies [J]. Chinese Journal of Catalysis, 2018, 39(4): 779-789. doi: 10.1016/S1872-2067(18)63056-6
[76] RAMANA E V, PRASAD N V, TOBALDI D M, et al. Effect of samarium and vanadium Co-doping on structure, ferroelectric and photocatalytic properties of bismuth titanate [J]. RSC Advances, 2017, 7(16): 9680-9692. doi: 10.1039/C7RA00021A
[77] YUAN C W, CHEN R M, WANG J D, et al. La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression [J]. Journal of hazardous materials, 2020, 400: 123174. doi: 10.1016/j.jhazmat.2020.123174
[78] CHANG L B, ZHU G Q, HASSAN Q U, et al. Synergetic effects of Pd(0) metal nanoparticles and Pd(2+) ions on enhanced photocatalytic activity of ZnWO4 nanorods for nitric oxide removal [J]. Langmuir:the ACS journal of surfaces and colloids, 2019, 35(35): 11265-11274. doi: 10.1021/acs.langmuir.9b01323
[79] ZHANG R, ZHANG A, CAO Y, et al. Mo-doped carbon nitride homojunction to promote oxygen activation for enhanced photocatalytic performance [J]. Chemical Engineering Journal, 2020, 401: 126028. doi: 10.1016/j.cej.2020.126028
[80] LI J R, RAN M X, CHEN P, et al. Controlling the secondary pollutant on B-doped g-C3N4 during photocatalytic NO removal: A combined DRIFTS and DFT investigation [J]. Catalysis Science & Technology, 2019, 9(17): 4531-4537.
[81] RAN M, LI J, CUI W, et al. Efficient and stable photocatalytic NO removal on C self-doped g-C3N4: Electronic structure and reaction mechanism [J]. Catalysis Science & Technology, 2018, 8(13): 3387-3394.
[82] JIN R, JIANG X, ZHOU Y, et al. Microspheres of graphene oxide coupled to n-doped Bi2O2CO3 for visible light photocatalysis [J]. Chinese Journal of Catalysis, 2016, 37(5): 760-768. doi: 10.1016/S1872-2067(15)61079-8
[83] ZHOU Y, ZHAO Z, WANG F, et al. Facile synthesis of surface n-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies [J]. Journal of Hazardous Materials, 2016, 307: 163-172. doi: 10.1016/j.jhazmat.2015.12.072
[84] DONG X A, ZHANG W, CUI W, et al. Pt quantum dots deposited on n-doped (BiO)2CO3: Enhanced visible light photocatalytic NO removal and reaction pathway [J]. Catalysis Science & Technology, 2017, 7(6): 1324-1332.
[85] YUAN C, CUI W, SUN Y, et al. Inhibition of the toxic byproduct during photocatalytic NO oxidation via La doping in ZnO [J]. Chinese Chemical Letters, 2020, 31(3): 751-754. doi: 10.1016/j.cclet.2019.09.033
[86] HUO W, XU W, CAO T, et al. Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study [J]. Applied Catalysis B:Environmental, 2019, 254: 206-213. doi: 10.1016/j.apcatb.2019.04.099
[87] YI J, LIAO J, XIA K, et al. Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal [J]. Chemical Engineering Journal, 2019, 370: 944-951. doi: 10.1016/j.cej.2019.03.182
[88] DONG G H, YANG L P, WANG F, et al. Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides [J]. ACS Catalysis, 2016, 6(10): 6511-6519. doi: 10.1021/acscatal.6b01657
[89] FENG X, ZHANG W, DENG H, et al. Efficient visible light photocatalytic NOx removal with cationic Ag clusters-grafted (BiO)2CO3 hierarchical superstructures [J]. Journal of Hazardous Materials, 2017, 322(PtA): 223-232.
[90] HUO W, XU W, CAO T, et al. Carbonate doped Bi2MoO6 hierarchical nanostructure with enhanced transformation of active radicals for efficient photocatalytic removal of NO [J]. Journal of Colloid and Interface Science, 2019, 557: 816-824. doi: 10.1016/j.jcis.2019.09.089
[91] SUN Y, XIONG T, NI Z, et al. Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration [J]. Applied Surface Science, 2015, 358: 356-362. doi: 10.1016/j.apsusc.2015.07.071
[92] LI K, CUI W, LI J, et al. Tuning the reaction pathway of photocatalytic NO oxidation process to control the secondary pollution on monodisperse Au nanoparticles@g-C3N4 [J]. Chemical Engineering Journal, 2019, 378: 122184. doi: 10.1016/j.cej.2019.122184
[93] DONG F, ZHAO Z W, SUN Y J, et al. An advanced semimetal–organic Bi spheres–g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification [J]. Environmental Science & Technology, 2015, 49(20): 12432-12440.
[94] LI X, SUN Y, XIONG T, et al. Activation of amorphous bismuth oxide via plasmonic Bi metal for efficient visible-light photocatalysis [J]. Journal of Catalysis, 2017, 352: 102-112. doi: 10.1016/j.jcat.2017.04.025
[95] LU Y, HUANG Y, ZHANG Y, et al. Effects of H2O2 generation over visible light-responsive Bi/Bi2O2CO3 nanosheets on their photocatalytic NO removal performance [J]. Chemical Engineering Journal, 2019, 363: 374-382. doi: 10.1016/j.cej.2019.01.172
[96] NI Z, ZHANG W, JIANG G, et al. Enhanced plasmonic photocatalysis by SiO2@Bi microspheres with hot-electron transportation channels via Bi–O–Si linkages [J]. Chinese Journal of Catalysis, 2017, 38(7): 1174-1183. doi: 10.1016/S1872-2067(17)62849-3
[97] SUN M, ZHANG W, SUN Y, et al. Synergistic integration of metallic Bi and defects on BiOI: Enhanced photocatalytic NO removal and conversion pathway [J]. Chinese Journal of Catalysis, 2019, 40(6): 826-836. doi: 10.1016/S1872-2067(18)63195-X
[98] ZHANG L, YANG C, LV K, et al. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement [J]. Chinese Journal of Catalysis, 2019, 40(5): 755-764. doi: 10.1016/S1872-2067(19)63320-6
[99] ZHU G, HOJAMBERDIEV M, ZHANG S, et al. Enhancing visible-light-induced photocatalytic activity of BiOI microspheres for NO removal by synchronous coupling with Bi metal and graphene [J]. Applied Surface Science, 2019, 467-468: 968-978. doi: 10.1016/j.apsusc.2018.10.246
[100] ZHAO Z, FAN J, LIU W, et al. In-situ hydrothermal synthesis of Ag3PO4/g-C3N4 composite and their photocatalytic decomposition of NOx [J]. Journal of Alloys and Compounds, 2017, 695: 2812-2819. doi: 10.1016/j.jallcom.2016.12.001
[101] ZHANG W, DONG X A, LIANG Y, et al. Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: Enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation [J]. Applied Surface Science, 2018, 455: 236-243. doi: 10.1016/j.apsusc.2018.05.171
[102] ZHANG W, DONG X A, JIA B, et al. 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation [J]. Applied Surface Science, 2018, 430: 571-577. doi: 10.1016/j.apsusc.2017.06.186
[103] ZHANG G P, ZHU X W, CHEN D Y, et al. Hierarchical z-scheme g-C3N4/Au/ZnIn2S4 photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion [J]. Environmental Science:Nano, 2020, 7(2): 676-687. doi: 10.1039/C9EN01325C
[104] WANG C, FU M, CAO J, et al. BaWO4/g-C3N4 heterostructure with excellent bifunctional photocatalytic performance [J]. Chemical Engineering Journal, 2020, 385: 123833. doi: 10.1016/j.cej.2019.123833
[105] LU Y, HUANG Y, CAO J-J, et al. Constructing z-scheme SnO2/N-doped carbon quantum dots/ZnSn(OH)6 nanohybrids with high redox ability for NOx removal under Vis-NIR light [J]. Journal of Materials Chemistry A, 2019, 7(26): 15782-15793. doi: 10.1039/C9TA03504D
[106] LI Y, WU X, HO W, et al. Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 z-scheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation [J]. Chemical Engineering Journal, 2018, 336: 200-210. doi: 10.1016/j.cej.2017.11.045
[107] KOU M, DENG Y, ZHANG R, et al. Molecular oxygen activation enhancement by BiOBr0.5I0.5/BiOI utilizing the synergistic effect of solid solution and heterojunctions for photocatalytic NO removal [J]. Chinese Journal of Catalysis, 2020, 41(10): 1480-1487. doi: 10.1016/S1872-2067(20)63607-5
[108] HUO W, CAO T, XU W, et al. Facile construction of Bi2MO3O12@Bi2O2CO3 heterojunctions for enhanced photocatalytic efficiency toward NO removal and study of the conversion process [J]. Chinese Journal of Catalysis, 2020, 41(2): 268-275. doi: 10.1016/S1872-2067(19)63460-1
[109] GUO Z, HUO W, CAO T, et al. Controllable synthesis of a 3D ZnS@MoO3 heterojunction via a hydrothermal method towards efficient NO purification under visible light [J]. CrystEngComm, 2020, 22(2): 257-266. doi: 10.1039/C9CE01375J
[110] CHEN R, WANG H, WU H, et al. SrTiO3/BiOI heterostructure: Interfacial charge separation, enhanced photocatalytic activity, and reaction mechanism [J]. Chinese Journal of Catalysis, 2020, 41(4): 710-718. doi: 10.1016/S1872-2067(19)63472-8
[111] BALBUENA J, CARRARO G, CRUZ M, et al. Advances in photocatalytic NOx abatement through the use of Fe2O3/TiO2 nanocomposites [J]. RSC Advances, 2016, 6(78): 74878-74885. doi: 10.1039/C6RA15958C
[112] WANG Z, HUANG Y, CHEN L, et al. In situ g-C3N4 self-sacrificial synthesis of a g-C3N4/LaCO3OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal [J]. Journal of Materials Chemistry A, 2018, 6(3): 972-981. doi: 10.1039/C7TA09132J
[113] MENDOZA J A, LEE D H, KANG J H. Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: Effect of surface modification [J]. Chemosphere, 2017, 182: 539-546. doi: 10.1016/j.chemosphere.2017.05.069
[114] LI J, YAN P, LI K, et al. Generation and transformation of ROS on g-C3N4 for efficient photocatalytic NO removal: A combined in situ DRIFTS and DFT investigation [J]. Chinese Journal of Catalysis, 2018, 39(10): 1695-1703. doi: 10.1016/S1872-2067(18)63097-9
[115] NIE H Y, OU M, ZHONG Q, et al. Efficient visible-light photocatalytic oxidation of gaseous NO with graphitic carbon nitride (g-C3N4) activated by the alkaline hydrothermal treatment and mechanism analysis [J]. Journal of Hazardous Materials, 2015, 300: 598-606. doi: 10.1016/j.jhazmat.2015.07.066
[116] ZHU W, XIAO S N, ZHANG D Q, et al. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: Potential application in flue gas treatment [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2015, 31(39): 10822-10830. doi: 10.1021/acs.langmuir.5b02232
[117] WANG H, HE W, DONG X A, et al. In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous g-C3N4 nanosheets [J]. RSC Advances, 2017, 7(31): 19280-19287. doi: 10.1039/C7RA00879A
[118] LI H, SHANG H, CAO X M, et al. Oxygen vacancies mediated complete visible light NO oxidation via side-on bridging superoxide radicals [J]. Environmental Science & Technology, 2018, 52(15): 8659-8665.
[119] LI X, ZHANG W, CUI W, et al. Reactant activation and photocatalysis mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: A combined experimental and theoretical investigation [J]. Chemical Engineering Journal, 2019, 370: 1366-1375. doi: 10.1016/j.cej.2019.04.003
[120] LI Y, GU M, ZHANG M, et al. C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for efficient and stable NO photo-oxidation [J]. Chemical Engineering Journal, 2020, 389: 124421. doi: 10.1016/j.cej.2020.124421
[121] LI H, CHEN S, SHANG H, et al. Surface hydrogen bond network spatially confined BiOCl oxygen vacancy for photocatalysis [J]. Science Bulletin, 2020, 65(22): 1916-1923. doi: 10.1016/j.scib.2020.06.013
[122] LIAO J, CUI W, LI J, et al. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4 [J]. Chemical Engineering Journal, 2020, 379: 122282. doi: 10.1016/j.cej.2019.122282
[123] CUI W, LI J Y, DONG F, et al. Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters@amorphous carbon nitride [J]. Environmental Science & Technology, 2017, 51(18): 10682-10690.
[124] WANG H, SUN Y J, JIANG G M, et al. Unraveling the mechanisms of visible light photocatalytic NO purification on earth-abundant insulator-based core–shell heterojunctions [J]. Environmental Science & Technology, 2018, 52(3): 1479-1487.
[125] TAN X F, QIN G D, CHENG G, et al. Oxygen vacancies enhance photocatalytic removal of NO over an n-doped TiO2 catalyst [J]. Catalysis Science & Technology, 2020, 10(20): 6923-6934.
[126] SHANG H, HUANG S, LI H, et al. Dual-site activation enhanced photocatalytic removal of NO with Au/CeO2 [J]. Chemical Engineering Journal, 2020, 386: 124047. doi: 10.1016/j.cej.2020.124047
[127] DONG G, HO W, ZHANG L. Photocatalytic NO removal on BiOI surface: The change from nonselective oxidation to selective oxidation [J]. Applied Catalysis B:Environmental, 2015, 168-169: 490-496. doi: 10.1016/j.apcatb.2015.01.014