[1] 张东晓, 杨婷云. 美国页岩气水力压裂开发对环境的影响 [J]. 石油勘探与开发, 2015, 42(6): 801-807. ZHANG D X, YANG T Y. Environmental impacts of hydraulic fracturing in shale gas development in the United States [J]. Petroleum Exploration and Development, 2015, 42(6): 801-807(in Chinese).
[2] 张东晓, 杨婷云. 页岩气开发综述 [J]. 石油学报, 2013, 34(4): 792-801. doi: 10.7623/syxb201304023 ZHANG D X, YANG T Y. An overview of shale gas production [J]. Acta Petrolei Sinica, 2013, 34(4): 792-801(in Chinese). doi: 10.7623/syxb201304023
[3] ZHANG S, SHENG J J. Effect of water imbibition on hydration induced fracture and permeability of shale cores [J]. Journal of Natural Gas Science and Engineering, 2017, 45: 726-737. doi: 10.1016/j.jngse.2017.06.008
[4] PAUKERT VANKEUREN A N, HAKALA J A, JARVIS K, et al. Mineral reactions in shale gas reservoirs: Barite scale formation from reusing produced water as hydraulic fracturing fluid [J]. Environmental Science & Technology, 2017, 51(16): 9391-9402.
[5] MAGUIRE-BOYLE S J, BARRON A R. Organic compounds in produced waters from shale gas wells [J]. Environmental Science:Processes & Impacts, 2014, 16(10): 2237-2248.
[6] 竹涛, 薛泽宇, 牛文凤, 等. 中美页岩气水力压裂返排液环境影响与治理 [J]. 油气田环境保护, 2019, 29(5): 65-70,78. doi: 10.3969/j.issn.1005-3158.2019.05.018 ZHU T, XUE Z Y, NIU W F, et al. Water quality characteristics and treatment status of hydraulic fracturing effluent during shale gas exploitation in China and the United States [J]. Environmental Protection of Oil & Gas Fields, 2019, 29(5): 65-70,78(in Chinese). doi: 10.3969/j.issn.1005-3158.2019.05.018
[7] 杨德敏, 夏宏, 袁建梅, 等. 页岩气压裂返排废水处理方法探讨 [J]. 环境工程, 2013, 31(6): 31-36. YANG D M, XIA H, YUAN J M, et al. Discussion on treatment methods of fracturing recovery wastewater from shale gas filed [J]. Environmental Engineering, 2013, 31(6): 31-36(in Chinese).
[8] 刘平礼, 兰夕堂, 李年银, 等. 酸预处理在水力压裂中降低伤害机理研究 [J]. 西南石油大学学报(自然科学版), 2016, 38(3): 150-155. LIU P L, LAN X T, LI N Y, et al. A study on damage reduction mechanism of acid preflushing during hydraulic fracturing [J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(3): 150-155(in Chinese).
[9] 葛忠伟, 樊莉. 页岩气研究中应注意的问题 [J]. 油气地质与采收率, 2013, 20(6): 19-22. doi: 10.3969/j.issn.1009-9603.2013.06.005 GE Z W, FAN L. Some notable problems about shale gas in the scientific research [J]. Petroleum Geology and Recovery Efficiency, 2013, 20(6): 19-22(in Chinese). doi: 10.3969/j.issn.1009-9603.2013.06.005
[10] WANG L, FORTNER J D, GIAMMAR D E. Impact of water chemistry on element mobilization from Eagle Ford shale [J]. Environmental Engineering Science, 2015, 32(4): 310-320. doi: 10.1089/ees.2014.0342
[11] 周冰, 刘立, 金之钧, 等. 泥岩盖层的溶蚀作用机理实验-不同pH值盐水中溶蚀速率变化规律 [J]. 石油学报, 2017, 38(8): 916-924. doi: 10.7623/syxb201708006 ZHOU B, LIU L, JIN Z J, et al. Dissolution mechanism experiment of mudstone cap: the variation law of dissolution rate in different pH value brine [J]. Acta Petrolei Sinica, 2017, 38(8): 916-924(in Chinese). doi: 10.7623/syxb201708006
[12] 张杰, 寿建峰, 文应初, 等. 去白云石化作用机理及其对储集层的改造 [J]. 古地理学报, 2012, 14(1): 69-84. doi: 10.7605/gdlxb.2012.01.007 ZHANG J, SHOU J F, WEN Y C, et al. Mechanism of dedolomitization and its rebuilding to reservoir [J]. Journal of Palaeogeography, 2012, 14(1): 69-84(in Chinese). doi: 10.7605/gdlxb.2012.01.007
[13] MARCON V, JOSEPH C, CARTER K E, et al. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale [J]. Applied Geochemistry, 2017, 76: 36-50. doi: 10.1016/j.apgeochem.2016.11.005
[14] DIETERICH M, KUTCHKO B, GOODMAN A. Characterization of marcellus shale and huntersville chert before and after exposure to hydraulic fracturing fluid via feature relocation using field-emission scanning electron microscopy [J]. Fuel, 2016, 182: 227-235. doi: 10.1016/j.fuel.2016.05.061
[15] CRITTENDEN J C, TRUSSELL R R, HAND D W, et al. MWH's water treatment: principles and design[M]. New Jersey: John Wiley & Sons, 2012.
[16] 闫志为, 刘辉利, 张志卫. 温度及CO2对方解石, 白云石溶解度影响特征分析 [J]. 中国岩溶, 2009, 28(1): 7-10,41. doi: 10.3969/j.issn.1001-4810.2009.01.002 YAN Z W, LIU H L, ZHANG Z W. Influences of temperature and ${{\rm{P}}_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}} $ on the solubility of calcite and dolomite [J]. Carsologica Sinica, 2009, 28(1): 7-10,41(in Chinese). doi: 10.3969/j.issn.1001-4810.2009.01.002
[17] 李丹, 徐飞高, 赵末名, 等. 不同类型酸对石灰岩的模拟腐蚀实验 [J]. 环境化学, 2011, 30(12): 2069-2074. LI D, XU F G, ZHAO M M, et al. Simulated corrosion by acid rain on carbonate stone [J]. Environmental Chemistry, 2011, 30(12): 2069-2074(in Chinese).
[18] 吴志坚, 刘海宁, 张慧芳. 离子强度对吸附影响机理的研究进展 [J]. 环境化学, 2010, 29(6): 997-1003. WU Z J, LIU H N, ZHANG H F. Research progress on mechanisms about the effect on ionic strength on adsorption [J]. Environmental Chemistry, 2010, 29(6): 997-1003(in Chinese).
[19] 杨亚提, 张平. 离子强度对恒电荷土壤胶体吸附Cu2+和Pb2+的影响 [J]. 环境化学, 2001, 20(6): 566-571. doi: 10.3321/j.issn:0254-6108.2001.06.007 YANG Y T, ZHANG P. Ionic strength effects on Cu2+, Pb2+ adsorption in constant charge soil colloids [J]. Environmental Chemistry, 2001, 20(6): 566-571(in Chinese). doi: 10.3321/j.issn:0254-6108.2001.06.007
[20] RISTHAUS P, BOSBACH D, BECKER U, et al. Barite scale formation and dissolution at high ionic strength studied with atomic force microscopy [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 191(3): 201-214.
[21] RENOCK D, LANDIS J D, SHARMA M. Reductive weathering of black shale and release of barium during hydraulic fracturing [J]. Applied Geochemistry, 2016, 65: 73-86. doi: 10.1016/j.apgeochem.2015.11.001
[22] MOGOLLÓN J L, PÉREZ-DIAZ A, MONACO S L. The effects of ion identity and ionic strength on the dissolution rate of a gibbsitic bauxite [J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 781-795. doi: 10.1016/S0016-7037(99)00351-8
[23] PHAN T T, CAPO R C, STEWART B W, et al. Trace metal distribution and mobility in drill cuttings and produced waters from Marcellus Shale gas extraction: Uranium, arsenic, barium [J]. Applied Geochemistry, 2015, 60: 89-103. doi: 10.1016/j.apgeochem.2015.01.013
[24] WILKE F D H, VIETH-HILLEBRAND A, NAUMANN R, et al. Induced mobility of inorganic and organic solutes from black shales using water extraction: Implications for shale gas exploitation [J]. Applied Geochemistry, 2015, 63: 158-168. doi: 10.1016/j.apgeochem.2015.07.008
[25] LIANG L, HOFMANN A, GU B. Ligand-induced dissolution and release of ferrihydrite colloids [J]. Geochimica et Cosmochimica Acta, 2000, 64(12): 2027-2037. doi: 10.1016/S0016-7037(00)00349-5
[26] PEIFFER S, STUBERT I. The oxidation of pyrite at pH 7 in the presence of reducing and nonreducing Fe (Ⅲ)-chelators [J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3171-3182.
[27] GREGORY K B, VIDIC R D, DZOMBAK D A. Water management challenges associated with the production of shale gas by hydraulic fracturing [J]. Elements, 2011, 7(3): 181-186. doi: 10.2113/gselements.7.3.181
[28] WANG L, BURNS S, GIAMMAR D E, et al. Element mobilization from Bakken shales as a function of water chemistry [J]. Chemosphere, 2016, 149: 286-293. doi: 10.1016/j.chemosphere.2016.01.107
[29] LI Y, YANG S, LIU D, et al. Experimental study of shale-fluids interaction during oxidative dissolution with hydrogen peroxide, sodium hypochlorite and sodium persulfate [J]. Applied Geochemistry, 2020, 113: 104503. doi: 10.1016/j.apgeochem.2019.104503
[30] 卜显忠, 高珂, 龙涛. 高钙体系中柠檬酸对磁黄铁矿的活化作用 [J]. 金属矿山, 2017(3): 81-86. doi: 10.3969/j.issn.1001-1250.2017.03.017 BU X Z, GAO K, LONG T. Activation mechanism of pyrrhotite by citric acid in high calcium system [J]. Metal Mine, 2017(3): 81-86(in Chinese). doi: 10.3969/j.issn.1001-1250.2017.03.017
[31] TUTTLE M L W, BREIT G N, GOLDHABER M B. Weathering of the new albany shale, kentucky: Ⅱ. Redistribution of minor and trace elements [J]. Applied Geochemistry, 2009, 24(8): 1565-1578. doi: 10.1016/j.apgeochem.2009.04.034