[1] LI J, ZHENG L, WANG S L, et al. Sorption mechanisms of lead on silicon-rich biochar in aqueous solution: spectroscopic investigation [J]. Science of the Total Environment, 2019, 672: 572-582. doi: 10.1016/j.scitotenv.2019.04.003
[2] LEE E H, LEE S K, KIM M J, et al. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor [J]. Food Chemistry, 2019, 287: 205-213. doi: 10.1016/j.foodchem.2019.02.079
[3] RWEI S P, KAO S C, LIOU G S, et al. Curing and pyrolysis of epoxy resins containing 2-(6-oxido-6 H -dibenz (c, e )(1, 2)oxaphosphorin-6-yl)-1, 4-naphthalenediol or bisphenol S [J]. Colloid and Polymer Science, 2003, 281(5): 407-415. doi: 10.1007/s00396-002-0787-8
[4] YANG T, WANG L, LIU Y, et al. Comparative study on ferrate oxidation of BPS and BPAF: Kinetics, reaction mechanism, and the improvement on their biodegradability [J]. Water Research, 2019, 148: 115-125. doi: 10.1016/j.watres.2018.10.018
[5] LIAO C, KANNAN K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure [J]. J Agric Food Chem, 2013, 61(19): 4655-4622. doi: 10.1021/jf400445n
[6] LIAO C, KANNAN K. A Survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States [J]. Archives of Environmental Contamination and Toxicology, 2014, 67(1): 50-59. doi: 10.1007/s00244-014-0016-8
[7] NADERI M, WONG M Y L, GHOLAMI F. Developmental exposure of zebrafish (danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults [J]. Aquat Toxicol, 2014, 148: 195-203. doi: 10.1016/j.aquatox.2014.01.009
[8] GU J, ZHANG J, CHEN Y, et al. Neurobehavioral effects of bisphenol S exposure in early life stages of zebrafish larvae (Danio rerio) [J]. Chemosphere, 2019, 217: 629-635. doi: 10.1016/j.chemosphere.2018.10.218
[9] 王子莹, 金洁, 张哲赟, 等. 土壤和沉积物中有机质对双酚A和17α-乙炔基雌二醇的吸附行为 [J]. 环境化学, 2012, 31(5): 625-630. WANG Z Y, JIN J, ZHANG Z, et al. Sorption of 17α-ethinyl estradiol and bisphenol A by different soil/sediment organic matter fractions [J]. Environmental Chemistry, 2012, 31(5): 625-630(in Chinese).
[10] CHOI Y J, LEE L S. Partitioning behavior of bisphenol alternatives BPS and BPAF compared to BPA [J]. Environmental Science & Technology, 2017, 51(7): 3725-3732.
[11] SUN K, KANG M, ZHANG Z, et al. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene [J]. Environmental Science & Technology, 2013, 47(20): 11473-11481.
[12] 沈杰, 刘建超, 陆光华, 等. 双酚S和双酚F在水环境中的分布、毒理效应及其生态风险研究进展 [J]. 生态毒理学报, 2018, 13(5): 37-48. doi: 10.7524/AJE.1673-5897.20171009001 SHEN J, LIU J C, LU G H, et al. A review of the occurrence, toxicology and ecological risk assessment of bisphenol S and F in aquatic environment [J]. Asian Journal of Ecotoxicology, 2018, 13(5): 37-48(in Chinese). doi: 10.7524/AJE.1673-5897.20171009001
[13] 黄晓妍, 裴志国, 罗磊, 等. 双酚S在两种典型地带性土壤中的吸附/解吸行为研究 [J]. 环境科学学报, 2020, 40(4): 1452-1459. HUANG X Y, PEI Z G, LUO L, et al. Sorption and desorption of bisphenol S in two typical zonal soils [J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1452-1459(in Chinese).
[14] ABDOLLAHI L, SCHJONNING P, ELMHOLT S, et al. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability [J]. Soil & Tillage Research, 2014, 136: 28-37.
[15] GUO H, LI H, LIANG N, et al. Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite [J]. Environmental Science and Pollution Research, 2016, 23(9): 8976-8984. doi: 10.1007/s11356-016-6040-7
[16] HOU J, PAN B, NIU X, et al. Sulfamethoxazole sorption by sediment fractions in to comparison pyrene and bisphenol A [J]. Environ Pollut, 2010, 158: 2826-2832. doi: 10.1016/j.envpol.2010.06.023
[17] YU G. Root exudates and microbial communities drive mineral dissolution and the formation of nano-size minerals in soils: Implications for Soil Carbon Storage [M]. Berlin : Springer , 2018.
[18] DREVER J I, STILLINGS L L. The role of organic acids in mineral weathering [J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1997, 120(1/3): 167-181.
[19] 李浩成, 左应梅, 杨绍兵, 等. 三七根系分泌物在连作障碍中的生态效应及缓解方法 [J]. 中国农业科技导报, 2020, 22(8): 159-167. LI H C, ZUO Y M, YANG S B, et al. Ecological effects and mitigation methods of panax notoginseng root exudates in continuous cropping obstacles [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 159-167(in Chinese).
[20] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nature Climate Change, 2015, 5(6): 588-595. doi: 10.1038/nclimate2580
[21] ZHOU D, CHEN B, WU M, et al. Ofloxacin sorption in soils after long-term tillage:The contribution of organic and mineral compositions [J]. Science of the Total Environment, 2014, 497: 665-670.
[22] PIGNATELLO J J, SEOKJOON KWON A, LU Y. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char):   attenuation of surface activity by humic and fulvic acids [J]. Environ Sci Technol, 2006, 40(24): 7757-7763. doi: 10.1021/es061307m
[23] DRILLIA P, STAMATELATOU K, LYBERATOS G. Fate and mobility of pharmaceuticals in solid matrices [J]. Chemosphere, 2005, 60(8): 1034-1044. doi: 10.1016/j.chemosphere.2005.01.032
[24] GUNASEKARA A S, SIMPSON M J, XING B S. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids [J]. Environmental Science & Technology, 2003, 37(5): 852-858.
[25] ZHAO X, ARSHAD M, LI N, et al. Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (Cation exchange capacity) in a sugarcane field [J]. Computers and Electronics in Agriculture, 2020, 173: 105436. doi: 10.1016/j.compag.2020.105436
[26] 张继光, 秦江涛, 要文倩, 等 长期施肥对红壤旱地土壤活性有机碳和酶活性的影响 [J]. 土壤, 2010, 42(3): 364-371. ZHANG J G, QIN J T, YAO W Q, et al. Effects of long-term fertilization on soil active organic carbon and soil enzyme. activities in upland red soils[J]. Soil, 2010, 42(3): 364-371 (in Chinese).
[27] MADER B T, UWEGOSS K, EISENREICH S J. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces [J]. Environmental Science & Technology, 1997, 31(4): 1079-1086.
[28] VOICE T C, WEBER W J. Sorption of hydrophobic compounds by sediments, soils and suspended solids—I. Theory and background [J]. Water Research, 1983, 17(10): 1433-1441. doi: 10.1016/0043-1354(83)90275-0
[29] ZHU D, PIGNATRLLO J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model [J]. Environmental science & Technology, 2005, 39(7): 2033-2041.
[30] ZHU D Q, HYUN S H, PIGNATELLO J J, et al. Evidence for pi-pi electron donor-acceptor interactions between pi-donor aromatic compounds and pi-acceptor sites in soil organic matter through pH effects on sorption [J]. Environmental Science & Technology, 2004, 38(16): 4361-4368.
[31] SENESI N. Binding mechanisms of pesticides to soil humic substances [J]. The Science of the total environment, 1992, 123/124: 63-76. doi: 10.1016/0048-9697(92)90133-D
[32] 李祖然, 闵强, 孙晶晶, 等. As胁迫对二年生三七生长、根部As含量和根系分泌物的影响 [J]. 北京农学院学报, 2015, 30(3): 86-91. LI Z R, MIN Q,SUN J J, et al. Effect of As stress on the growth, the root As contents and root exudates in 2-year-old Panax notoginseng [J]. Journal of Beijing University of Agriculture, 2015, 30(3): 86-91(in Chinese).