[1] 史建波, 阴永光, 江桂斌. 汞的分子转化与长距离传输[M]. 北京: 科学出版社, 2019. SHI J B, YIN Y G, JIANG G B. Molecular transformation and long-range transport of mercury [M]. Beijing: Science Press, 2019(in Chinese).
[2] SAIZ-LOPEZ A, TRAVNIKOV O, SONKE J E, et al. Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere [J]. PNAS, 2020, 117(49): 30949-30956. doi: 10.1073/pnas.1922486117
[3] 方莹莹, 王颖, 史建波, 等. 大气中活性气态汞的分析方法和赋存转化 [J]. 化学进展, 2021, 33(1): 151-161. FANG Y Y, WANG Y, SHI J B, et al. Analysis methods, occurrence, and transformation of reactive gaseous mercury in the atmosphere [J]. Progress in Chemistry, 2021, 33(1): 151-161(in Chinese).
[4] SCHROEDER W H, MUNTHE J. Atmospheric mercury—An overview [J]. Atmospheric Environment, 1998, 32(5): 809-822. doi: 10.1016/S1352-2310(97)00293-8
[5] LIN C J, PEHKONEN S O. The chemistry of atmospheric mercury: A review [J]. Atmospheric Environment, 1999, 33(13): 2067-2079. doi: 10.1016/S1352-2310(98)00387-2
[6] SHAO J J, SHI J B, DUO B, et al. Mercury in alpine fish from four rivers in the Tibetan Plateau [J]. Journal of Environmental Sciences, 2016, 39: 22-28. doi: 10.1016/j.jes.2015.09.009
[7] POISSANT L, ZHANG H H, CANÁRIO J, et al. Critical review of mercury fates and contamination in the arctic tundra ecosystem [J]. Science of the Total Environment, 2008, 400(1/2/3): 173-211.
[8] KHIRI D, LOUIS F, ČERNUŠÁK I, et al. BrHgO• + CO: Analogue of OH + CO and reduction path for Hg(II) in the atmosphere [J]. ACS Earth and Space Chemistry, 2020, 4(10): 1777-1784. doi: 10.1021/acsearthspacechem.0c00171
[9] FRANCÉS-MONERRIS A, CARMONA-GARCÍA J, ACUÑA A U, et al. Photodissociation mechanisms of major mercury(II) species in the atmospheric chemical cycle of mercury [J]. Angewandte Chemie (International Ed. in English), 2020, 59(19): 7605-7610. doi: 10.1002/anie.201915656
[10] LU X, LIU Y R, JOHS A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis bem [J]. Environmental Science & Technology, 2016, 50(8): 4366-4373.
[11] DENG L, WU F, DENG N S, et al. Photoreduction of mercury(II) in the presence of algae, Anabaena cylindrical [J]. Journal of Photochemistry and Photobiology B:Biology, 2008, 91(2/3): 117-124.
[12] SCHROEDER W H, ANLAUF K G, BARRIE L A, et al. Arctic springtime depletion of mercury [J]. Nature, 1998, 394(6691): 331-332. doi: 10.1038/28530
[13] HOLMES C D, JACOB D J, CORBITT E S, et al. Global atmospheric model for mercury including oxidation by bromine atoms [J]. Atmospheric Chemistry and Physics, 2010, 10(24): 12037-12057. doi: 10.5194/acp-10-12037-2010
[14] WANG S Y, MCNAMARA S M, MOORE C W, et al. Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion [J]. PNAS, 2019, 116(29): 14479-14484. doi: 10.1073/pnas.1900613116
[15] SAIZ-LOPEZ A, ACUÑA A U, TRABELSI T, et al. Gas-phase photolysis of Hg(I) radical species: A new atmospheric mercury reduction process [J]. Journal of the American Chemical Society, 2019, 141(22): 8698-8702. doi: 10.1021/jacs.9b02890
[16] ARIYA P A, KHALIZOV A, GIDAS A. Reactions of gaseous mercury with atomic and molecular halogens:   kinetics, product studies, and atmospheric implications [J]. The Journal of Physical Chemistry A, 2002, 106(32): 7310-7320. doi: 10.1021/jp020719o
[17] CALVERT J G, LINDBERG S E. Mechanisms of mercury removal by O3 and OH in the atmosphere [J]. Atmospheric Environment, 2005, 39(18): 3355-3367. doi: 10.1016/j.atmosenv.2005.01.055
[18] SHEPLER B C, PETERSON K A. Mercury monoxide:   A systematic investigation of its ground electronic state [J]. The Journal of Physical Chemistry A, 2003, 107(11): 1783-1787. doi: 10.1021/jp027512f
[19] FILATOV M, CREMER D. Revision of the dissociation energies of mercury chalcogenides: Unusual types of mercury bonding [J]. Chemphyschem, 2004, 5(10): 1547-1557. doi: 10.1002/cphc.200301207
[20] HALL B. The gas phase oxidation of elemental mercury by ozone [J]. Water, Air, and Soil Pollution, 1995, 80(1/2/3/4): 301-315.
[21] TOSSELL J A. Calculation of the energetics for oxidation of gas-phase elemental Hg by Br and BrO [J]. The Journal of Physical Chemistry A, 2003, 107(39): 7804-7808. doi: 10.1021/jp030390m
[22] PAL B, ARIYA P A. Studies of ozone initiated reactions of gaseous mercury: Kinetics, product studies, and atmospheric implications [J]. Physical Chemistry Chemical Physics, 2004, 6(3): 572. doi: 10.1039/b311150d
[23] SUMNER A L, SPICER C W, SATOLA J, et al. Environmental chamber studies of mercury reactions in the atmosphere[M]//Dynamics of Mercury Pollution on Regional and Global Scales: . New York: Springer-Verlag, : 193-212.
[24] SNIDER G, RAOFIE F, ARIYA P A. Effects of relative humidity and CO(g) on the O3-initiated oxidation reaction of Hg0(g): Kinetic & product studies [J]. Physical Chemistry Chemical Physics, 2008, 10(36): 5616. doi: 10.1039/b801226a
[25] HYNES A J, DONOHOUE D L, GOODSITE M E, et al. Our current understanding of major chemical and physical processes affecting mercury dynamics in the atmosphere and at the air-water/terrestrial interfacesMercury Fate and Transport in the Global Atmosphere, 2009: 427-457. DOI:10.1007/978-0-387-93958-2_14.
[26] SOMMAR J, GÅRDFELDT K, STRÖMBERG D, et al. A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury [J]. Atmospheric Environment, 2001, 35(17): 3049-3054. doi: 10.1016/S1352-2310(01)00108-X
[27] GOODSITE M E, PLANE J M C, SKOV H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere [J]. Environmental Science & Technology, 2004, 38(6): 1772-1776.
[28] EZARFI N, TOUIMI BENJELLOUN A, SABOR S, et al. Theoretical investigations of structural, thermal properties and stability of the group 12 metal M(XH) isomers in atmosphere: M = (Zn, Cd, Hg) and XH = (OH, SH) [J]. Theoretical Chemistry Accounts, 2019, 138(9): 1-14.
[29] DIBBLE T S, TETU H L, JIAO Y G, et al. Modeling the OH-initiated oxidation of mercury in the global atmosphere without violating physical laws [J]. The Journal of Physical Chemistry. A, 2020, 124(2): 444-453. doi: 10.1021/acs.jpca.9b10121
[30] CREMER D, KRAKA E, FILATOV M. Bonding in mercury molecules described by the normalized elimination of the small component and coupled cluster theory [J]. Chemphyschem, 2008, 9(17): 2510-2521. doi: 10.1002/cphc.200800510
[31] BAUER D, D’OTTONE L, CAMPUZANO-JOST P, et al. Gas phase elemental mercury: A comparison of LIF detection techniques and study of the kinetics of reaction with the hydroxyl radical [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 157(2/3): 247-256.
[32] HOROWITZ H M, JACOB D J, ZHANG Y X, et al. A new mechanism for atmospheric mercury redox chemistry: Implications for the global mercury budget [J]. Atmospheric Chemistry and Physics, 2017, 17(10): 6353-6371. doi: 10.5194/acp-17-6353-2017
[33] WANG F, SAIZ-LOPEZ A, MAHAJAN A S, et al. Enhanced production of oxidised mercury over the tropical Pacific Ocean: A key missing oxidation pathway [J]. Atmospheric Chemistry and Physics, 2014, 14(3): 1323-1335. doi: 10.5194/acp-14-1323-2014
[34] SHEPLER B C, BALABANOV N B, PETERSON K A. Ab initio thermochemistry involving heavy atoms:   an investigation of the reactions Hg + IX (X = I, br, cl, O) [J]. The Journal of Physical Chemistry A, 2005, 109(45): 10363-10372. doi: 10.1021/jp0541617
[35] TELLINGHUISEN J, ASHMORE J G. Mixed representations for diatomic spectroscopic data: Application to HgBr [J]. Chemical Physics Letters, 1983, 102(1): 10-16. doi: 10.1016/0009-2614(83)80647-2
[36] DIBBLE T S, ZELIE M J, MAO H. Thermodynamics of reactions of ClHg and BrHg radicals with atmospherically abundant free radicals [J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10271-10279. doi: 10.5194/acp-12-10271-2012
[37] JIAO Y G, DIBBLE T S. Quality structures, vibrational frequencies, and thermochemistry of the products of reaction of BrHg• with NO2, HO2, ClO, BrO, and IO [J]. The Journal of Physical Chemistry A, 2015, 119(42): 10502-10510. doi: 10.1021/acs.jpca.5b04889
[38] DIBBLE T S, SCHWID A C. Thermodynamics limits the reactivity of BrHg radical with volatile organic compounds [J]. Chemical Physics Letters, 2016, 659: 289-294. doi: 10.1016/j.cplett.2016.07.065
[39] TOYOTA K, DASTOOR A P, RYZHKOV A. Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 2: Mercury and its speciation [J]. Atmospheric Chemistry and Physics, 2014, 14(8): 4135-4167. doi: 10.5194/acp-14-4135-2014
[40] JIAO Y G, DIBBLE T S. First kinetic study of the atmospherically important reactions BrHg˙ + NO2 and BrHg˙ + HOO [J]. Physical Chemistry Chemical Physics, 2017, 19(3): 1826-1838. doi: 10.1039/C6CP06276H
[41] DONOHOUE D L, BAUER D, COSSAIRT B, et al. Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with br:   A pulsed laser photolysis-pulsed laser induced fluorescence study [J]. The Journal of Physical Chemistry A, 2006, 110(21): 6623-6632. doi: 10.1021/jp054688j
[42] SUN G Y, SOMMAR J, FENG X B, et al. Mass-dependent and -independent fractionation of mercury isotope during gas-phase oxidation of elemental mercury vapor by atomic Cl and Br [J]. Environmental Science & Technology, 2016, 50(17): 9232-9241.
[43] KHALIZOV A F, VISWANATHAN B, LARREGARAY P, et al. A theoretical study on the reactions of Hg with halogens:   atmospheric implications [J]. The Journal of Physical Chemistry A, 2003, 107(33): 6360-6365. doi: 10.1021/jp0350722
[44] SHEPLER B C, BALABANOV N B, PETERSON K A. Hg+Br→HgBr recombination and collision-induced dissociation dynamics [J]. The Journal of Chemical Physics, 2007, 127(16): 164304. doi: 10.1063/1.2777142
[45] RAOFIE F, ARIYA P A. Product study of the gas-phase BrO-initiated oxidation of Hg0: Evidence for stable Hg1+ compounds [J]. Environmental Science & Technology, 2004, 38(16): 4319-4326.
[46] TAS E, OBRIST D, PELEG M, et al. Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea [J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2429-2440. doi: 10.5194/acp-12-2429-2012
[47] BALABANOV N B, PETERSON K A. Mercury and reactive halogens: The thermochemistry of Hg + {Cl2, Br2, BrCl, ClO, and BrO} [J]. The Journal of Physical Chemistry A, 2003, 107(38): 7465-7470. doi: 10.1021/jp035547p
[48] DIBBLE T S, ZELIE M J, JIAO Y G. Quantum chemistry guide to PTRMS studies of as-yet undetected products of the bromine-atom initiated oxidation of gaseous elemental mercury [J]. The Journal of Physical Chemistry A, 2014, 118(36): 7847-7854. doi: 10.1021/jp5041426
[49] TOKOS J J S, HALL B, CALHOUN J A, et al. Homogeneous gas-phase reaction of Hg° with H2O2,CH3I, AND (CH3)2S: Implications for atmospheric Hg cycling [J]. Atmospheric Environment, 1998, 32(5): 823-827. doi: 10.1016/S1352-2310(97)00171-4
[50] SOMMAR J, HALLQUIST M, LJUNGSTRÖM E, et al. On the gas phase reactions between volatile biogenic mercury species and the nitrate radical [J]. Journal of Atmospheric Chemistry, 1997, 27(3): 233-247. doi: 10.1023/A:1005873712847
[51] PELEG M, TAS E, OBRIST D, et al. Observational evidence for involvement of nitrate radicals in nighttime oxidation of mercury [J]. Environmental Science & Technology, 2015, 49(24): 14008-14018.
[52] RUTTER A P, SHAKYA K M, LEHR R, et al. Oxidation of gaseous elemental mercury in the presence of secondary organic aerosols [J]. Atmospheric Environment, 2012, 59: 86-92. doi: 10.1016/j.atmosenv.2012.05.009
[53] KIM P R, HAN Y J, HOLSEN T M, et al. Atmospheric particulate mercury: Concentrations and size distributions [J]. Atmospheric Environment, 2012, 61: 94-102. doi: 10.1016/j.atmosenv.2012.07.014
[54] CHEN J B, HINTELMANN H, FENG X B, et al. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada [J]. Geochimica et Cosmochimica Acta, 2012, 90: 33-46. doi: 10.1016/j.gca.2012.05.005
[55] KURIEN U, HU Z Z, LEE H, et al. Radiation enhanced uptake of Hg0(g) on iron (oxyhydr)oxide nanoparticles [J]. RSC Advances, 2017, 7(71): 45010-45021. doi: 10.1039/C7RA07401H
[56] PIRRONE N, CINNIRELLA S, FENG X, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources [J]. Atmospheric Chemistry and Physics, 2010, 10(13): 5951-5964. doi: 10.5194/acp-10-5951-2010
[57] HU Y, CHENG H F. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations [J]. Environmental Pollution, 2016, 218: 1209-1221. doi: 10.1016/j.envpol.2016.08.077
[58] GALBREATH K C, ZYGARLICKE C J. Mercury transformations in coal combustion flue gas [J]. Fuel Processing Technology, 2000, 65/66: 289-310. doi: 10.1016/S0378-3820(99)00102-2
[59] PAVLISH J H, SONDREAL E A, MANN M D, et al. Status review of mercury control options for coal-fired power plants [J]. Fuel Processing Technology, 2003, 82(2/3): 89-165.
[60] HALL B, SCHAGER P, LINDQVIST O. Chemical reactions of mercury in combustion flue gases [J]. Water Air & Soil Pollution, 1991, 56(1): 3-14.
[61] NIKSA S, NAIK C V, BERRY M S, et al. Interpreting enhanced Hg oxidation with Br addition at Plant Miller [J]. Fuel Processing Technology, 2009, 90(11): 1372-1377. doi: 10.1016/j.fuproc.2009.05.022
[62] NORTON G A, YANG H Q, BROWN R C, et al. Heterogeneous oxidation of mercury in simulated post combustion conditions [J]. Fuel, 2003, 82(2): 107-116. doi: 10.1016/S0016-2361(02)00254-5
[63] CZAPLICKA M, PYTA H. Transformations of mercury in processes of solid fuel combustion – review [J]. Archives of Environmental Protection, 2017, 43(4): 82-93. doi: 10.1515/aep-2017-0041
[64] YANG Y J, LIU J, WANG Z, et al. Homogeneous and heterogeneous reaction mechanisms and kinetics of mercury oxidation in coal-fired flue gas with bromine addition [J]. Proceedings of the Combustion Institute, 2017, 36(3): 4039-4049. doi: 10.1016/j.proci.2016.08.068
[65] SAIZ-LOPEZ A, SITKIEWICZ S P, ROCA-SANJUÁN D, et al. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition [J]. Nature Communications, 2018, 9: 4796. doi: 10.1038/s41467-018-07075-3
[66] de FOY B, TONG Y D, YIN X F, et al. First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight [J]. Atmospheric Environment, 2016, 134: 27-39. doi: 10.1016/j.atmosenv.2016.03.028
[67] HUANG Q, CHEN J B, HUANG W L, et al. Diel variation in mercury stable isotope ratios records photoreduction of PM2.5-bound mercury [J]. Atmospheric Chemistry and Physics, 2019, 19(1): 315-325. doi: 10.5194/acp-19-315-2019
[68] LAM K T, WILHELMSEN C J, SCHWID A C, et al. Computational study on the photolysis of BrHgONO and the reactions of BrHgO• with CH4, C2H6, NO, and NO2: Implications for formation of Hg(II) compounds in the atmosphere [J]. The Journal of Physical Chemistry A, 2019, 123(8): 1637-1647. doi: 10.1021/acs.jpca.8b11216
[69] DUZY C, HYMAN H A. Radiative lifetimes for the B→X transition in HgCl, HgBr, and HgI [J]. Chemical Physics Letters, 1977, 52(2): 345-348. doi: 10.1016/0009-2614(77)80556-3
[70] WADT W R. The electronic structure of HgCl and HgBr [J]. Applied Physics Letters, 1979, 34(10): 658-660. doi: 10.1063/1.90627
[71] JULIENNE P S, KONOWALOW D D, KRAUSS M, et al. Photodissociation of HgCl [J]. Applied Physics Letters, 1980, 36(2): 132-134. doi: 10.1063/1.91396
[72] KRAUSS M, STEVENS W J. Photodissociation of HgBr, XΣ1/2 [J]. Applied Physics Letters, 1981, 39(9): 686-688. doi: 10.1063/1.92869
[73] ARIYA P A, AMYOT M, DASTOOR A, et al. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions [J]. Chemical Reviews, 2015, 115(10): 3760-3802. doi: 10.1021/cr500667e
[74] YUE L, ZHOU S D, SUN X Y, et al. Direct room-temperature conversion of methane into protonated formaldehyde: The gas-phase chemistry of mercury among the zinc triad oxide cations [J]. Angewandte Chemie (International Ed. in English), 2018, 57(12): 3251-3255. doi: 10.1002/anie.201712405
[75] KAUPP M, von SCHNERING H G. Gaseous mercury(IV) fluoride, HgF4: An ab initio study [J]. Angewandte Chemie International Edition in English, 1993, 32(6): 861-863. doi: 10.1002/anie.199308611
[76] PONGPRUEKSA P, LIN C J, LINDBERG S E, et al. Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism [J]. Atmospheric Environment, 2008, 42(8): 1828-1845. doi: 10.1016/j.atmosenv.2007.11.020
[77] SEIGNEUR C, VIJAYARAGHAVAN K, LOHMAN K. Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions [J]. Journal of Geophysical Research Atmospheres, 2006, 111(D22): D22306. doi: 10.1029/2005JD006780