[1] |
LAU C, ANITOLE K, HODES C, et al. Perfluoroalkyl acids: A review of monitoring and toxicological findings [J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2007, 99(2): 366-394. doi: 10.1093/toxsci/kfm128
|
[2] |
罗梅清, 卓琼芳, 许振成, 等. 全氟化合物处理技术的研究进展 [J]. 环境科学与技术, 2015, 38(8): 60-67.
LUO M Q, ZHUO Q F, XU Z C, et al. Research trends on degradation of perfluorinated compounds-a review [J]. Environmental Science & Technology, 2015, 38(8): 60-67(in Chinese).
|
[3] |
张美, 楼巧婷, 邵倩文, 等. 全氟化合物污染现状及风险评估的研究进展 [J]. 生态毒理学报, 2019, 14(3): 30-53.
ZHANG M, LOU Q T, SHAO Q W, et al. Research progress of perfluorinated compounds pollution status and risk assessment [J]. Asian Journal of Ecotoxicology, 2019, 14(3): 30-53(in Chinese).
|
[4] |
ZHANG Y Y, MOORES A, LIU J X, et al. New insights into the degradation mechanism of perfluorooctanoic acid by persulfate from density functional theory and experimental data [J]. Environmental Science & Technology, 2019, 53(15): 8672-8681.
|
[5] |
GE H, YAMAZAKI E, YAMASHITA N, et al. Particle size specific distribution of perfluoro alkyl substances in atmospheric particulate matter in Asian cities [J]. Environ Science:Process & Impacts, 2017, 19(4): 549-560.
|
[6] |
JOVICIC V, KHAN M J, ZBOGAR-RASIC A, et al. Degradation of low concentrated perfluorinated compounds (PFCs) from water samples using non-thermal atmospheric plasma (NTAP) [J]. Energies, 2018, 11(5): 1290-1304. doi: 10.3390/en11051290
|
[7] |
CHEN S, JIAO X C, GAI N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China [J]. Environmental Pollution, 2016, 211: 124-131. doi: 10.1016/j.envpol.2015.12.024
|
[8] |
LAM J C W, LYU J L, KWOK K Y, et al. Perfluoroalkyl substances (PFASs) in marine mammals from the South China Sea and their temporal changes 2002–2014: concern for alternatives of PFOS? [J]. Environmental Science & Technology, 2016, 50(13): 6728-6736.
|
[9] |
MACINNIS J J, FRENCH K, MUIR D C G, et al. Emerging investigator series: A 14-year depositional ice record of perfluoroalkyl substances in the High Arctic [J]. Environmental Science:Processes & Impacts, 2017, 19(1): 22-30.
|
[10] |
RENNER R. Growing concern over perfluorinated chemicals [J]. Environmental Science & Technology, 2001, 35(7): 154-160.
|
[11] |
GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife [J]. Environmental Science & Technology, 2001, 35(7): 1339-1342.
|
[12] |
LASSEN C J A A, POTRYKUS A, CHRISTENSEN F, et al. Survey of PFOS, PFOA and other perfluoroalkyl and polyfluoroalkyl substances[R]. Environmental Project No. 1475, 2013.
|
[13] |
SCHRÖDER H F. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents [J]. Journal of Chromatography A, 2003, 1020(1): 131-151. doi: 10.1016/S0021-9673(03)00936-1
|
[14] |
LIOU J S C, SZOSTEK B, DERITO C M, et al. Investigating the biodegradability of perfluorooctanoic acid [J]. Chemosphere, 2010, 80(2): 176-183. doi: 10.1016/j.chemosphere.2010.03.009
|
[15] |
卢丽娟, 唐敏康, 陈瑛, 等. 典型全氟化合物的去除技术研究进展 [J]. 四川环境, 2016, 35(5): 135-141. doi: 10.3969/j.issn.1001-3644.2016.05.027
LU L J, TANG M K, CHEN Y, et al. Research progress on the removal technologies of typical perfluorinated compounds [J]. Sichuan Environment, 2016, 35(5): 135-141(in Chinese). doi: 10.3969/j.issn.1001-3644.2016.05.027
|
[16] |
王飞, 李晓明, 李建勇, 等. 水中全氟化合物的污染处理研究进展 [J]. 水处理技术, 2016, 42(11): 5-11.
WANG F, LI X M, LI J Y, et al. Research progress on degradation of perfluorinated compounds in water [J]. Technology of Water Treatment, 2016, 42(11): 5-11(in Chinese).
|
[17] |
许晨敏. 水中典型全氟化合物(PFCs)的吸附及光催化降解研究[D]. 南京: 南京理工大学, 2018.
XU C M. Removal of typical perfluorinated compounds(PFCs) by adsorption and photocatalysis[D]. Nanjing: Nanjing University of Science & Technology, 2018 (in Chinese).
|
[18] |
黄宏, 李圆杏, 杨红伟. 水环境中抗生素的光降解研究进展 [J]. 环境化学, 2013, 32(7): 1335-1341. doi: 10.7524/j.issn.0254-6108.2013.07.029
HUANG H, LI Y X, YANG H W. Research progress on photodegradation of antibiotics in aqueous solution [J]. Environmental Chemistry, 2013, 32(7): 1335-1341(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.029
|
[19] |
HORI H, HAYAKAWA E, EINAGA H, et al. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches [J]. Environmental Science & Technology, 2004, 38(22): 6118-6124.
|
[20] |
CHENG J H, LIANG X Y, YANG S W, et al. Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by VUV/Fe3+ system [J]. Chemical Engineering Journal, 2014, 239: 242-249. doi: 10.1016/j.cej.2013.11.023
|
[21] |
CHATTERJEE D, DASGUPTA S. Visible light induced photocatalytic degradation of organic pollutants [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2005, 6(2): 186-205.
|
[22] |
SONG Z, TANG H, WANG N, et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system [J]. Journal of Hazardous Materials, 2013, 262: 332-338. doi: 10.1016/j.jhazmat.2013.08.059
|
[23] |
GIESY J P, MABURY S A, MARTIN J W, et al. Perfluorinated compounds in the great lakes[M]. Springer Berlin Heidelberg, 2006: 391-438.
|
[24] |
CHEN J, ZHANG P Y, LIU J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light [J]. Journal of Environmental Sciences, 2007, 19(4): 387-390. doi: 10.1016/S1001-0742(07)60064-3
|
[25] |
YAMAMOTO T, NOMA Y, SAKAI S I, et al. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol [J]. Environmental Science & Technology, 2007, 41(16): 5660-5665.
|
[26] |
LYU X J, LI W W, LAM P K, et al. Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution [J]. Scientific Reports, 2015, 5(1): 9353. doi: 10.1038/srep09353
|
[27] |
JIN L, ZHANG P Y, SHAO T, et al. Ferric ion mediated photodecomposition of aqueous perfluorooctane sulfonate (PFOS) under UV irradiation and its mechanism [J]. Journal of Hazardous Materials, 2014, 271: 9-15. doi: 10.1016/j.jhazmat.2014.01.061
|
[28] |
PARK H, VECITIS C D, CHENG J, et al. Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm [J]. Photochemical & Photobiological Sciences:Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2011, 10(12): 1945-1953.
|
[29] |
LIU D D, XIU Z M, LIU F, et al. Perfluorooctanoic acid degradation in the presence of Fe(Ⅲ) under natural sunlight [J]. Journal of Hazardous Materials, 2013, 262: 456-463. doi: 10.1016/j.jhazmat.2013.09.001
|
[30] |
SONG Z, TANG H Q, WANG N, et al. Activation of persulfate by UV and Fe 2+ for the defluorination of perfluorooctanoic acid [J]. Advances in Environmental Research, 2014, 3(3): 185-197. doi: 10.12989/aer.2014.3.3.185
|
[31] |
SONG C, CHEN P, WANG C Y, et al. Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites under 365nm UV irradiation [J]. Chemosphere, 2012, 86(8): 853-859. doi: 10.1016/j.chemosphere.2011.11.034
|
[32] |
WANG Y, ZHANG P Y. Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid [J]. Journal of Hazardous Materials, 2011, 192(3): 1869-1875. doi: 10.1016/j.jhazmat.2011.07.026
|
[33] |
CHEN M J, LO S L, LEE Y C, et al. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide [J]. Journal of Hazardous Materials, 2015, 288: 168-175. doi: 10.1016/j.jhazmat.2015.02.004
|
[34] |
ESKANDARIAN M R, FAZLI M, RASOULIFARD M H, et al. Decomposition of organic chemicals by zeolite-TiO2 nanocomposite supported onto low density polyethylene film under UV-LED powered by solar radiation [J]. Applied Catalysis B:Environmental, 2016, 183: 407-416. doi: 10.1016/j.apcatb.2015.11.004
|
[35] |
HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant [J]. Environmental Science & Technology, 2005, 39(7): 2383-2388.
|
[36] |
LI X Y, ZHANG P Y, JIN L, et al. Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism [J]. Environmental Science & Technology, 2012, 46(10): 5528-5534.
|
[37] |
LI Z M, ZHANG P Y, SHAO T, et al. Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA) [J]. Journal of Hazardous Materials, 2013, 260: 40-46. doi: 10.1016/j.jhazmat.2013.04.042
|
[38] |
TIAN H T, GU C. Effects of different factors on photodefluorination of perfluorinated compounds by hydrated electrons in organo-montmorillonite system [J]. Chemosphere, 2018, 191: 280-287. doi: 10.1016/j.chemosphere.2017.10.074
|
[39] |
SUN Z Y, ZHANG C J, CHEN P, et al. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process [J]. Water Research, 2017, 127: 50-58. doi: 10.1016/j.watres.2017.10.010
|
[40] |
GU Y R, LIU T Z, WANG H J, et al. Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system [J]. Science of the Total Environment, 2017, 607-608: 541-548. doi: 10.1016/j.scitotenv.2017.06.197
|
[41] |
CUI J K, GAO P P, YANG D. Destruction of per- and polyfluoroalkyl substances (PFAS) with advanced reduction processes (ARPs): A critical review [J]. Environmental Science & Technology, 2020, 54(7): 3752-3766.
|
[42] |
QU Y, ZHANG C, LI F, et al. Photo-reductive defluorination of perfluorooctanoic acid in water [J]. Water Research, 2010, 44(9): 2939-2947. doi: 10.1016/j.watres.2010.02.019
|
[43] |
杨波, 李影影, 余刚, 等. 物化作用氧化降解PFOA/PFOS [J]. 化学进展, 2014, 26(7): 1265-1274.
YANG B, LI Y Y, YU G, et al. Oxidative degradation of PFOA /PFOS with physicochemical techniques [J]. Progress in Chemistry, 2014, 26(7): 1265-1274(in Chinese).
|
[44] |
BENTEL M J, YU Y C, XU L H, et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: Structural dependence and implications to PFAS remediation and management [J]. Environmental Science & Technology, 2019, 53(7): 3718-3728.
|
[45] |
BAO Y X, HUANG J, CAGNETTA G, et al. Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/Sulfite reduction [J]. Water Research, 2019, 163: 114907. doi: 10.1016/j.watres.2019.114907
|
[46] |
ZOSCHKE K, BÖERNICK H, WORCH E. Vacuum-UV radiation at 185 nm in water treatment-a review [J]. Water Research, 2014, 52: 131-145. doi: 10.1016/j.watres.2013.12.034
|
[47] |
HORI H, NAGAOKA Y, YAMAMOTO A, et al. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water [J]. Environmental Science & Technology, 2006, 40(3): 1049-1054.
|
[48] |
KORMANN C, BAHNEMANN D W, HOFFMANN M R. Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions [J]. Environmental Science & Technology, 1991, 25(3): 494-500.
|
[49] |
HIDAKA H, JOU H, NOHARA K, et al. Photocatalytic degradation of the hydrophobic pesticide permethrin in fluoro surfactant / TiO2 aqueous dispersions [J]. Chemosphere, 1992, 25(11): 1589-1597. doi: 10.1016/0045-6535(92)90307-D
|
[50] |
YUAN Q Z, RAVIKRISHNA R, VALSARAJ K T. Reusable adsorbents for dilute solution separation. 5. Photodegradation of organic compounds on surfactant-modified titania [J]. Separation and Purification Technology, 2001, 24(1): 309-318.
|
[51] |
DA SILVA F L, LAITINEN T, PIRILÄ M, et al. Photocatalytic degradation of perfluorooctanoic acid (PFOA) from wastewaters by TiO2, In2O3 and Ga2O3 Catalysts [J]. Topics in Catalysis, 2017, 60(17-18): 1345-1358. doi: 10.1007/s11244-017-0819-8
|
[52] |
ZHANG W L, EFSTATHIADIS H, LI L Y, et al. Environmental factors affecting degradation of perfluorooctanoic acid (PFOA) by In2O3 nanoparticles [J]. Journal of Environmental Sciences, 2020, 93(7): 48-56.
|
[53] |
TAN X J, CHEN G H, XING D Y, et al. Transition metal-modified Ga2O3 hierarchical nanosheets as efficient photocatalysts for the degradation of perfluorooctanoic acid [J]. Environmental Science:Nano, 2020, 7(8): 2229-2239. doi: 10.1039/D0EN00259C
|
[54] |
YANG S W, CHENG J H, SUN J, et al. Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation [J]. Plos One, 2013, 8(10): 74877-74886. doi: 10.1371/journal.pone.0074877
|
[55] |
TROJANOWICZ M, BOJANOWSKA C A, BARTOSIEWICZ I, et al. Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – a review of recent advances [J]. Chemical Engineering Journal, 2018, 336: 170-199. doi: 10.1016/j.cej.2017.10.153
|
[56] |
HUANG L, DONG W B, HOU H Q. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis [J]. Chemical Physics Letters, 2007, 436(1): 124-128.
|
[57] |
MIALOCQ J C, AMOUYAL E, BERNAS A, et al. Picosecond laser photolysis of aqueous indole and tryptophan [J]. The Journal of Physical Chemistry, 1982, 86(16): 3173-3177. doi: 10.1021/j100213a022
|
[58] |
TIAN H T, GUO Y, PAN B, et al. Enhanced photoreduction of nitro-aromatic compounds by hydrated electrons derived from indole on natural montmorillonite [J]. Environmental Science & Technology, 2015, 49(13): 7784-7792.
|
[59] |
TIAN H, GAO J, LI H, et al. Complete defluorination of perfluorinated compounds by hydrated electrons generated from 3-indole-acetic-acid in organomodified montmorillonite [J]. Scientific Reports, 2016, 6(1): 32949-32958. doi: 10.1038/srep32949
|
[60] |
PARK H, VECITIS C D, CHENG J, et al. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroup and chain length [J]. The Journal of Physical Chemistry, 2009, 113: 690-696. doi: 10.1021/jp807116q
|