[1] |
侯红娟, 王洪洋, 周琪. 进水COD浓度及C/N值对脱氮效果的影响 [J]. 中国给水排水, 2005(12): 19-23. doi: 10.3321/j.issn:1000-4602.2005.12.005
HOU H J, WANG H Y, ZHOU Q. Effect of influent COD concentration and C/N ratio on denitrification [J]. China Water & Wastewater, 2005(12): 19-23(in Chinese). doi: 10.3321/j.issn:1000-4602.2005.12.005
|
[2] |
韦启信, 郑兴灿. 影响污水生物脱氮能力的关键水质参数及空间分布特征研究 [J]. 给水排水, 2013, 39(9): 127-131. doi: 10.3969/j.issn.1002-8471.2013.09.030
WEI Q X, ZHENG X C. Study on the key wastewater quality parameters influencing wastewater biological denitrification ability and their spatial distribution characteristics [J]. Water & Wastewater Engineering, 2013, 39(9): 127-131(in Chinese). doi: 10.3969/j.issn.1002-8471.2013.09.030
|
[3] |
TIAN T, YU H Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters [J]. Bioresource Technology, 2020, 299: 122686. doi: 10.1016/j.biortech.2019.122686
|
[4] |
李文超, 石寒松, 王琦, 等. 硫自养反硝化技术在污废水处理中应用研究进展 [J]. 水处理技术, 2017, 43(8): 1-6.
LI W C, SHI H S, WANG Q, et al. Application progress of sulfur-autotrophic denitrification technology in wastewater treatment [J]. Technology of Water Treatment, 2017, 43(8): 1-6(in Chinese).
|
[5] |
姚鹏程, 袁怡, 龙震宇, 等. 单质硫自养反硝化研究现状及展望 [J]. 现代化工, 2018, 38(6): 28-32.
YAO P C, YUAN Y, LONG Z Y, et al. Status and prospects of researches on autotrophic denitrification of elemental sulfur [J]. Modern Chemical Industry, 2018, 38(6): 28-32(in Chinese).
|
[6] |
LIANG J, CHEN N, TONG S, et al. Sulfur autotrophic denitrification (SAD) driven by homogeneous composite particles containing CaCO3−type kitchen waste for groundwater remediation [J]. Chemosphere, 2018, 212: 954-963. doi: 10.1016/j.chemosphere.2018.08.161
|
[7] |
ZHU T T, CHENG H Y, YANG L H, et al. Coupled sulfur and iron(Ⅱ) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal [J]. Environmental Science & Technology, 2019, 53(3): 1545-1554.
|
[8] |
ANDERSEN M, KARI J, BORCH K, et al. Michaelis-Menten equation for degradation of insoluble substrate [J]. Mathematical Biosciences, 2018, 296: 93-97. doi: 10.1016/j.mbs.2017.11.011
|
[9] |
GHANE E, FAUSEY N R, BROWN L C. Modeling nitrate removal in a denitrification bed [J]. Water Research, 2015, 71: 294-305. doi: 10.1016/j.watres.2014.10.039
|
[10] |
HE X, XI B, WEI Z, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste [J]. Chemosphere, 2011, 82(4): 541-548. doi: 10.1016/j.chemosphere.2010.10.057
|
[11] |
李祥, 马航, 黄勇, 等. 异养与硫自养反硝化协同处理高硝氮废水特性研究 [J]. 环境科学, 2016, 37(7): 2646-2651.
LI X, MA H, HUANG Y, et al. Characteristics of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of high nitrate in water [J]. Environmental Science, 2016, 37(7): 2646-2651(in Chinese).
|
[12] |
LI R, FENG C P, HU W W, et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation [J]. Water Research, 2016, 89: 171-179. doi: 10.1016/j.watres.2015.11.044
|
[13] |
HU S H, WU Y G, ZHANG Y J, et al. Nitrate removal from groundwater by heterotrophic/autotrophic denitrification using easily degradable organics and nano-zero valent iron as co-electron donors [J]. Water Air and Soil Pollution, 2018, 229(3): 56. doi: 10.1007/s11270-018-3713-5
|
[14] |
张稳. 基于硫铁矿自养反硝化同步去除二级出水中氮磷的研究[D]. 北京: 中国地质大学(北京), 2019.
ZHANG W. Synchronous N and P removal by pyrite-based autotrophic denitrification from secondary effluent[D]. Beijing : China University of Geosciences (Beijing ), 2019(in Chinese).
|
[15] |
DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification [J]. Chemical Engineering Journal, 2019, 362: 922-937. doi: 10.1016/j.cej.2019.01.069
|
[16] |
李志华, 曾金锋, 李胜, 等. 颗粒粒径与数量对硝化与反硝化过程的影响 [J]. 环境科学, 2012, 33(3): 903-909.
LI Z H, ZENG J F, LI S, et al. Effect of size and number of aerobic granules on nitrification and denitrification [J]. Environmental Science, 2012, 33(3): 903-909(in Chinese).
|
[17] |
安鹏, 杨凤林, 张捍民, 等. 不同粒径好氧颗粒污泥的性质比较 [J]. 给水排水, 2007, 33(z1): 45-49. doi: 10.3969/j.issn.1002-8471.2007.z1.012
AN P, YANG F L, ZHANG H M, et al. The comparison of different size of aerobic granular sludge’s properties [J]. Water & Wastewater Engineering, 2007, 33(z1): 45-49(in Chinese). doi: 10.3969/j.issn.1002-8471.2007.z1.012
|
[18] |
马航, 朱强, 朱亮, 等. 单质硫颗粒尺寸及反应器类型对硫自养反硝化反应器启动的影响 [J]. 环境科学, 2016, 37(6): 2235-2242.
MA H, ZHU Q, ZHU L, et al. Effect of element sulfur particle size and type of the reactor on start-up of sulfur-based autotrophic denitrification reactor [J]. Environmental Science, 2016, 37(6): 2235-2242(in Chinese).
|
[19] |
陈浬, 王海, 黄韬, 等. 反硝化滤池深度处理污水厂尾水的效能研究 [J]. 中国给水排水, 2017, 33(13): 99-103.
CHEN L, WANG H, HUANG T, et al. Treatment efficiency of secondary effluent of WWTP by denitrification filter [J]. China Water &Wastewater, 2017, 33(13): 99-103(in Chinese).
|
[20] |
KOSTRYTSIA A, PAPIRIO S, FRUNZO L, et al. Elemental sulfur-based autotrophic denitrification and denitritation: microbially catalyzed sulfur hydrolysis and nitrogen conversions [J]. Journal of Environmental Management, 2018, 211: 313-322.
|
[21] |
朱睿, 刘艳霖. 有机溶剂中尼龙布固定化木瓜蛋白酶动力学性能研究 [J]. 化工设计通讯, 2020, 46(8): 131-134. doi: 10.3969/j.issn.1003-6490.2020.08.087
ZHU R, LIU Y L. Kinetic characteristics of immobilized papain from neilon cloth in organic solvents [J]. Chemical Engineering Design Communications, 2020, 46(8): 131-134(in Chinese). doi: 10.3969/j.issn.1003-6490.2020.08.087
|
[22] |
初志战, 陈纪鹏, 刘小林, 等. 醇类有机溶剂对木瓜蛋白酶催化活性的影响机理 [J]. 食品与生物技术学报, 2014, 33(10): 1112-1115.
CHU Z Z, CHEN J P, LIU X L, et al. Effect on catalytic activity and conformation of papain with four kinds of organic solvent [J]. Journal of Food Science and Biotechnology, 2014, 33(10): 1112-1115(in Chinese).
|
[23] |
董晓英, 李式军, 沈仁芳. 白菜不同品种对硝酸盐吸收积累差异原因初探 [J]. 园艺学报, 2003, 30(4): 470-472. doi: 10.3321/j.issn:0513-353X.2003.04.025
DONG X Y, LI S J, SHEN R F. The nitrate uptake and accumulation of Pak-choi [J]. Acta Horticulturae Sinica, 2003, 30(4): 470-472(in Chinese). doi: 10.3321/j.issn:0513-353X.2003.04.025
|
[24] |
丁清华, 常刘伟. 进水中硝酸盐浓度对砂柱脱氮的影响 [J]. 广州化工, 2014, 42(2): 69-70. doi: 10.3969/j.issn.1001-9677.2014.02.025
DING Q H, CHANG L W. Effect of influent nitrate concentration on denitrification in sand column [J]. Guangzhou Chemical Industry, 2014, 42(2): 69-70(in Chinese). doi: 10.3969/j.issn.1001-9677.2014.02.025
|
[25] |
PAN Y, NI B J, YUAN Z. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification [J]. Environmental Science & Technology, 2013, 47(19): 11083-11091.
|
[26] |
张庆芳, 李美玉, 王晓辉, 等. 微生物亚硝酸盐还原酶的研究进展 [J]. 微生物学通报, 2019, 46(11): 3148-3157.
ZHANG Q F, LI M Y, WANG X H, et al. Research progress of microbial nitrite reductase [J]. Microbiology China, 2019, 46(11): 3148-3157(in Chinese).
|
[27] |
艾小凡, 王鹤立, 陈祥龙. 地下水硝酸盐污染生物修复中的亚硝态氮积累研究 [J]. 环境工程, 2014, 32(1): 33-36.
AI X F, WANG H L, CHEN X L. Experiment research on the problem of nitrite accumulation in groundwater during biological denitrification. [J]. Water Pollution Control, 2014, 32(1): 33-36(in Chinese).
|
[28] |
KUYPERS M M, MARCHANT H K, BORAN K. The microbial nitrogen-cycling network[J]. Nature Reviews. Microbiology, 2018, 16(5): 263-276.
|
[29] |
张新艳, 彭党聪, 万琼, 等. 活性污泥中硝酸盐异化还原成铵(DNRA)过程及其影响因素 [J]. 环境保护前沿, 2018, 8(2): 95-105. doi: 10.12677/AEP.2018.82012
ZHANG X Y, PENG D C, WAN Q, et al. Dominant factors of dissimilatory nitrate reduction to ammonia (DNRA) in activated sludge system: A comment [J]. Advances in Environmental Protection, 2018, 8(2): 95-105(in Chinese). doi: 10.12677/AEP.2018.82012
|