[1] WANG P, HU Y, CHENG H F. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China[J]. Environmental Pollution, 2019, 252: 461-475. doi: 10.1016/j.envpol.2019.04.082
[2] ZHOU Q Q, YANG N, LI Y Z, et al. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017[J]. Global Ecology and Conservation, 2020, 22: e925.
[3] LIU X P, JIANG J, YAN Y, et al. Distribution and risk assessment of metals in water, sediments, and wild fish from Jinjiang River in Chengdu, China[J]. Chemosphere, 2018, 196: 45-52. doi: 10.1016/j.chemosphere.2017.12.135
[4] HUANG Y, CHEN Q Q, DENG M H, et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China[J]. Journal of Environmental Management, 2018, 207: 159-168.
[5] 李钰婷, 张亚雷, 代朝猛, 等. 纳米零价铁颗粒去除水中重金属的研究进展[J]. 环境化学, 2012, 31(9): 1349-1354.
[6] 杨世迎, 任腾飞, 张艺萱, 等. 水环境中ZVI/氧化剂体系及其电子迁移作用机制[J]. 化学进展, 2017, 29(4): 388-399. doi: 10.7536/PC170133
[7] LINGAMDINNE L P, CHANG Y, YANG J, et al. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals[J]. Chemical Engineering Journal, 2017, 307: 74-84. doi: 10.1016/j.cej.2016.08.067
[8] FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267: 194-205. doi: 10.1016/j.jhazmat.2013.12.062
[9] ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304.
[10] SUN Y L, LI J X, HUANG T L, et al. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review[J]. Water Research, 2016, 100: 277-295. doi: 10.1016/j.watres.2016.05.031
[11] LEWIS A S, HUNTINGTON T G, MARVIN-DIPASQUALE M C, et al. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon[J]. Environmental Pollution, 2016, 212: 366-373. doi: 10.1016/j.envpol.2015.11.047
[12] 席冬冬, 李晓敏, 熊子璇, 等. 生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除[J]. 环境工程, 2020, 38(6): 58-66.
[13] 张守秋, 岑洁, 吕德义, 等. 纳米零价铁去除水中重金属铅、铬离子的研究[J]. 高校化学工程学报, 2019, 33(3): 524-532. doi: 10.3969/j.issn.1003-9015.2019.03.003
[14] WU Y X, WANG Y, HUANG X F, et al. Zerovalent iron in conjunction with surfactants to remediate sediments contaminated by polychlorinated biphenyls and nickel[J]. Chemosphere, 2017, 189: 479-488. doi: 10.1016/j.chemosphere.2017.09.038
[15] LING L, HUANG X Y, LI M R, et al. Mapping the reactions in a single zero-valent iron nanoparticle[J]. Environmental Science & Technology, 2017, 51(24): 14293-14300.
[16] GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034
[17] HAN W J, FU F L, CHENG Z H, et al. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater[J]. Journal of Hazardous Materials, 2016, 302: 437-446. doi: 10.1016/j.jhazmat.2015.09.041
[18] CHEN L, CHEN Z H C, CHEN D, et al. Removal of hexavalent chromium from contaminated waters by ultrasound-assisted aqueous solution ball milling[J]. Journal of Environmental Science, 2017, 52: 276-283. doi: 10.1016/j.jes.2016.04.006
[19] LEONEL A G, MANSUR A A P, MANSUR H S. Advanced functional nanostructures based on magnetic iron oxide nanomaterials for water remediation: A review[J]. Water Research, 2021, 190: 116693. doi: 10.1016/j.watres.2020.116693
[20] ELJAMAL O, THOMPSON I P, MAAMOUN I, et al. Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal[J]. Journal of Molecular Liquids, 2020, 299: 112144. doi: 10.1016/j.molliq.2019.112144
[21] TANG C L, HUANG Y H, ZENG H, et al. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe2+ and corrosion products, and selenate removal mechanisms[J]. Water Research, 2014, 67: 166-174. doi: 10.1016/j.watres.2014.09.016
[22] TANG C L, HUANG Y H, ZHANG Z, et al. Rapid removal of selenate in a zero-valent iron/Fe3O4/Fe2+ synergetic system[J]. Applied Catalysis B:Environmental, 2016, 184: 320-327. doi: 10.1016/j.apcatb.2015.11.045
[23] SU J J, CHEN H, WANG J L, et al. Enhanced dechlorination of carbon tetrachloride by Ni-doped zero-valent iron nanoparticles@magnetic Fe3O4(Ni4/Fe@Fe3O4) nanocomposites[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 623: 126691. doi: 10.1016/j.colsurfa.2021.126691
[24] YANG Z, MA X H, SHAN C, et al. Activation of zero-valent iron through ball-milling synthesis of hybrid Fe0/Fe3O4/FeCl2 microcomposite for enhanced nitrobenzene reduction[J]. Journal of Hazardous Materials, 2019, 368: 698-704. doi: 10.1016/j.jhazmat.2019.01.105
[25] WU B, JIA H C, YANG Z, et al. Enhanced removal of selenate from mining effluent by H2O2/HCl-pretreated zero-valentiron[J]. Water Science & Technology, 2018: 526/514878.
[26] 秦泽敏, 董黎明, 刘平, 等. 零价纳米铁吸附去除水中六价铬的研究[J]. 中国环境科学, 2014, 34(12): 3106-3111.
[27] LIANG W, DAI C M, ZHOU X F, et al. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions[J]. PloS One, 2014, 9(1): e85686. doi: 10.1371/journal.pone.0085686
[28] LI X Q, ZHANG W X. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C, 2007, 111(19): 6939-6946. doi: 10.1021/jp0702189
[29] 桑丽. 鼠李糖脂改性纳米零价铁对镍污染土壤修复及机理研究[D]. 上海: 华东理工大学, 2021.
[30] SANG L, WANG G H, LIU L, et al. Immobilization of Ni (II) at three levels of contaminated soil by rhamnolipids modified nano zero valent iron (RL@nZVI): Effects and mechanisms[J]. Chemosphere, 2021, 276: 130139. doi: 10.1016/j.chemosphere.2021.130139
[31] Musić, S RistićM. Adsorption of trace elements or radionuclides on hydrous iron oxides[J]. Journal of Radioanalytical and Nuclear Chemistry, 1988, 120(2): 289-304. doi: 10.1007/BF02037344
[32] MA L Y, DU Y G, CHEN S H, et al. Highly efficient removal of Cr(VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1[J]. Chemosphere, 2022, 287: 132184. doi: 10.1016/j.chemosphere.2021.132184
[33] MIN X B, LI Q, ZHANG X M, et al. Characteristics, kinetics, thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil[J]. Environmental Pollution, 2021, 289: 117830. doi: 10.1016/j.envpol.2021.117830
[34] 吕晓书. 稳定化纳来级零价铁的制备及对水中Cr(Ⅵ)的去除机制研究[D]. 杭州: 浙江大学, 2015.
[35] ARECO M M, SALEH-MEDINA L, TRINELLI M A, et al. Adsorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead Avena fatua biomass and the effect of these metals on their growth[J]. Colloids and Surfaces B:Biointerfaces, 2013, 110: 305-312. doi: 10.1016/j.colsurfb.2013.04.035
[36] ARGUN M E, DURSUN S, OZDEMIR C, et al. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics[J]. Journal of Hazardous Materials, 2007, 141(1): 77-85. doi: 10.1016/j.jhazmat.2006.06.095
[37] MAHDY A M, ZHANG T Q, LIN Z, et al. Zero-valent iron nanoparticles remediate nickel-contaminated aqueous solutions and biosolids-amended agricultural soil[J]. Materials, 2021, 14(10): 2655. doi: 10.3390/ma14102655
[38] LI Z, DONG H, ZHANG Y, et al. Enhanced removal of Ni(II) by nanoscale zero valent iron supported on Na-saturated bentonite[J]. Journal of Colloid and Interface Science, 2017, 497: 43-49. doi: 10.1016/j.jcis.2017.02.058
[39] XIE Y Y, LU G T, TAO X Q, et al. A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism[J]. Journal of Hazardous Materials, 2022, 422: 126952. doi: 10.1016/j.jhazmat.2021.126952
[40] FU F L, HAN W J, TANG B, et al. Insights into environmental remediation of heavy metal and organic pollutants: Simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity[J]. Chemical Engineering Journal, 2013, 232: 534-540. doi: 10.1016/j.cej.2013.08.014