[1] 周艺艺, 刘存, 王玉军. 不同主导晶面赤铁矿对Cr(Ⅵ)吸附与迁移行为的影响[J]. 农业环境科学学报, 2021, 40(8): 1667-74. doi: 10.11654/jaes.2021-0386
[2] SHANG J G, ZONG M Z, YU Y, et al. Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar[J]. Journal of Environmental Management, 2017, 197: 331-337. doi: 10.1016/j.jenvman.2017.03.085
[3] 李克, 王芳, 陈瑛. 中国铬渣污染地块现状与政策建议[J]. 中国环境科学学会科学技术年会论文集(第一卷), 2018: 合肥.
[4] ZHANG Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar[J]. Chemosphere, 2020, 245: 125542. doi: 10.1016/j.chemosphere.2019.125542
[5] 李东, 贺丽洁, 盛培培. Tessier连续提取法用于土壤铬分析的Cr(Ⅵ)-Cr(Ⅲ)转化及适用性[J]. 环境工程学报, 2021, 15(7): 2368-2378. doi: 10.12030/j.cjee.202012141
[6] LV X S, XU J, JIANG G M, et al. Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes[J]. Chemosphere, 2011, 85(7): 1204-1209. doi: 10.1016/j.chemosphere.2011.09.005
[7] COSTA M. Potential hazards of hexavalent chromate in our drinking water[J]. Toxicology Applied Pharmacology, 2003, 188: 1-5. doi: 10.1016/S0041-008X(03)00011-5
[8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848-2017[S]. 北京: 中国环境科学出版社, 2018.
[9] ZOU Y T, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304.
[10] 宋珍霞, 殷齐贺, 穆晓斐. 膨润土负载纳米零价铁去除废水中Cr(Ⅵ)的动力学特性研究[J]. 化工新型材料, 2018, 46(5): 199-203.
[11] HAN Y L, YAN W L. Reductive Dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment[J]. Environmental Science & Technology, 2016, 50(23): 12992-13001.
[12] PONDER S M, DARAB J G, MALLOUK T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron[J]. Environmental Science & Technology, 2000, 34(12): 2564-2569.
[13] QIAN L B, LIU S N, ZHANG W Y, et al. Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron[J]. Journal of Colloid and Interface Science, 2019, 533: 428-436. doi: 10.1016/j.jcis.2018.08.075
[14] 吴丽梅, 吕国诚, 廖立兵. 活性炭负载纳米零价铁去除污水中六价铬的研究[J]. 矿物学报, 2012, 32(S1): 181-182.
[15] 黄超, 余兵, 李任超, 等. 有机膨润土负载纳米零价铁还原-类芬顿氧化降解2, 4-二氯苯酚[J]. 环境工程学报, 2015, 9(8): 3643-3649. doi: 10.12030/j.cjee.20150810
[16] ZHANG W Y, QIAN L B, OUYANG D, et al. Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization[J]. Chemosphere, 2019, 221: 683-692. doi: 10.1016/j.chemosphere.2019.01.070
[17] QIAN L B and Chen B L. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles[J]. Environmental Science & Technology, 2013, 47(15): 8759-8768.
[18] 李云桂, 杨慧敏, 武彩霞, 等. 粒径和温度对玉米秸秆生物碳吸附锶的耦合影响[J]. 安全与环境学报. 2017, 17(4): 1459-1464.
[19] QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal[J]. Environmental Pollution, 2017, 223: 153-160. doi: 10.1016/j.envpol.2016.12.077
[20] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002
[21] SHANG X, YANG L, OUYANG D, et al. Enhanced removal of 1, 2, 4-trichlorobenzene by modified biochar supported nanoscale zero-valent iron and palladium[J]. Chemosphere, 2020, 249: 126518. doi: 10.1016/j.chemosphere.2020.126518
[22] ZHANG X J, ZHANG L, LI A M. Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal[J]. Journal of Environmental Management, 2018, 206: 989-998. doi: 10.1016/j.jenvman.2017.11.079
[23] SIZMUR T, FRESNO T, AKGUL G, et al. Biochar modification to enhance sorption of inorganics from water[J]. Bioresource Technology, 2017, 246: 34-47. doi: 10.1016/j.biortech.2017.07.082
[24] WU H W, FENG Q Y. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride[J]. Journal of Environmental Sciences, 2017, 54: 346-357. doi: 10.1016/j.jes.2016.11.017
[25] QIAN L B, SHANG X, ZHANG B, et al. Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron[J]. Chemosphere, 2019, 215: 739-745. doi: 10.1016/j.chemosphere.2018.10.030
[26] YIN H B, KONG M, GU X H, et al. Removal of arsenic from water by porous charred granulated attapulgite-supported hydrated iron oxide in bath and column modes[J]. Journal of Cleaner Production, 2017, 166: 88-97. doi: 10.1016/j.jclepro.2017.08.026
[27] LIU P, LIU W J, JIANG H, et al. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution[J]. Bioresource Technology, 2012, 121: 235-240. doi: 10.1016/j.biortech.2012.06.085
[28] AHMAD M, LEE S S, RAJAPAKSHA A U, et al. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperature[J]. Bioresource Technology, 2013, 143: 615-622. doi: 10.1016/j.biortech.2013.06.033
[29] 肖正辉, 李学良, 邢高瞻. 酸处理对秸秆基活性炭电化学性能的影响[J]. 硅酸盐学报, 2011, 39(4): 596-600.
[30] KHATAEE A, KAYAN B, KALDERIS D, et al. Ultrasound-assisted removal of acid red 17 using nanosized Fe3O4-loaded coffee waste hydrochar[J]. Ultrasonics Sonochemistry, 2017, 5: 72-80.
[31] ZHANG K K, SUN P, FAYE M, et al. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation[J]. Carbon, 2018, 130: 730-740. doi: 10.1016/j.carbon.2018.01.036
[32] SU H J, FANG Z Q, TSANG P E, et al. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles[J]. Journal of Hazardous Materials, 2016, 318: 533-540. doi: 10.1016/j.jhazmat.2016.07.039
[33] ZHANG W Y, QIAN L B, CHEN Y, et al. Nanoscale zero-valent iron supported by attapulgite produced at different acid modification: Synthesis mechanism and the role of silicon on Cr(VI) removal[J]. Chemosphere, 2020, 267: 129183.
[34] WU H W, FENG Q Y, YANG H, et al. Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: characterization, kinetics and mechanisms[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2017, 517: 63-71.
[35] YUAN Y, BOLAN N, PREVOTEAU A, et al. Applications of biochar in redox-mediated reactions[J]. Bioresource Technology, 2017, 246: 271-281. doi: 10.1016/j.biortech.2017.06.154
[36] YUAN Y F, ZHOU M, SHI J, et al. The significant role of electron donating capacity and carbon structure of biochar to electron transfer of zerovalent iron[J]. Chemosphere, 2021, 287: 132381.
[37] SHI L N, LIN Y M, ZHANG X, et al. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution[J]. Chemical Engineering Journal, 2011, 171(2): 612-617. doi: 10.1016/j.cej.2011.04.038
[38] LI R N, WANG Z W, GUO J L, et al. Enhanced adsorption of ciprofloxacin by KOH modified biochar derived from potato stems and leaves[J]. Water Science and Technology, 2018, 77(4): 1127-1136. doi: 10.2166/wst.2017.636
[39] WANG S S, ZHAO M Y, ZHOU M, et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review[J]. Journal of Hazardous Materials, 2019, 373: 820-834. doi: 10.1016/j.jhazmat.2019.03.080