[1] 刘兆民, 李耸耸, 黄贝贝, 等. 零价铁去除饮水中砷As(III)性能的研究[J]. 化工中间体, 2015,17(1): 34-36. DOI: CNKI:SUN:ZJTY.0.2015-01-017.
[2] 彭映林, 肖斌 . 两级中和-铁盐沉淀法处理高砷废水[J]. 工业水处理, 2016, 36(6): 64-68. DOI: CNKI:SUN:GYSC.0.2016-06-016.
[3] LUO Q, CHENG L, ZHANG M, et al. Comparison and characterization of polyacrylonitrile, polyvinyliden fluoride, and polyvinyl chloride composites functionalized with ferric hydroxide for removing arsenic from water[J]. Environmental Technology & Innovation, 2021, 24: 101927. DOI: 10.1016/j.eti.2021.101927.
[4] 肖静, 田凯勋, 高怡. 载铁活性炭吸附剂的制备及除砷(Ⅲ)性能研究[J]. 工业水处理, 2012, 32(11): 28-32. doi: 10.3969/j.issn.1005-829X.2012.11.008
[5] 公绪金, 董玉奇, 李伟光. 原位载铁中孔活性炭吸附As和天然有机物效能[J]. 中国环境科学, 2019, 39(9): 3857-3865. doi: 10.3969/j.issn.1000-6923.2019.09.031
[6] 宋志莲. 铁锰氧化物/煅烧牡蛎壳复合吸附剂对水中As(Ⅲ)的吸附性能及机理[D]. 大连: 大连理工大学, 2021.
[7] ZHANG Q L, LIN Y C, CHEN X, et al. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water[J]. Journal of Hazardous Materials, 2007, 148(3): 671-678. doi: 10.1016/j.jhazmat.2007.03.026
[8] 陈苹. 载铁活性炭吸附材料的制备及对水中砷(Ⅴ)的吸附研究[D]. 南昌: 江西理工大学, 2015.
[9] 朱慧杰, 贾永锋, 吴星, 等. 负载型纳米铁吸附剂去除饮用水中As(Ⅲ)的研究[J]. 环境科学, 2009, 30(6): 1644-1648. doi: 10.3321/j.issn:0250-3301.2009.06.014
[10] NIETO-DELGADO C, RANGEL-MENDEZ J R. Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water[J]. Water Research, 2012, 46(9): 2973-2982. doi: 10.1016/j.watres.2012.03.026
[11] 罗成. 载铁活性炭的制备及对水中三价砷的吸附研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[12] 肖静. 载铁活性炭吸附剂的制备及除砷机理研究[D]. 湘潭: 湘潭大学, 2013.
[13] 刘前进. 高铁酸钾的制备及其联合MIEX树脂去除水源中富里酸的特性研究[D]. 马鞍山: 安徽工业大学, 2016.
[14] 周娟娟, 李战军. 活性炭/纳米零价铁复合吸附剂的制备及对砷的去除应用[J]. 环境科学与管理, 2012,037(010):106-108. DOI: 10. 3969/j.issn.1673-1212.2012.10.027
[15] EGBOSIUBA T C, EGWUNYENGA M C, TIJANI J O, et al. Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes[J]. Journal of Hazardous Materials, 2022,423:126993. DOI: 10.1016/j.jhazmat.2021.126993
[16] ZHANG Y H, WANG Y C, ZHANG H H, et al. Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment[J]. Resources, Conservation & Recycling, 2020,156:104688. DOI: 10.1016/j.resconrec.2020.104688
[17] 夏新星, 马腾, 王志强, 等. 载铁活性炭烧结滤芯的制备及其除砷性能[J]. 环境工程学报, 2019, 13(07): 1534-1540. DOI: 10.12030/j.cjee.201809199.
[18] 王正芳. 载铁活性炭的制备及对P(V)的吸附性能研究[D]. 南京: 南京大学, 2011.
[19] NASSEH N, KHOSRAVI R, RUMMAN G A, et al. Adsorption of Cr(VI) ions onto powdered activated carbon synthesized from Peganum harmala seeds by ultrasonic waves activation[J]. Environmental Technology &Innovation, 2021, 21: 101277. DOI: 10.1016/j.eti.2020.101277.
[20] KAUR J, KAUR M, UBHI M K, et al. Composition optimization of activated carbon-iron oxide nanocomposite for effective removal of Cr(VI)ions[J]. Materials Chemistry and Physics, 2021, 258: 124002. doi: 10.1016/j.matchemphys.2020.124002
[21] FIERRO V, MUÑIZ G, GONZALEZ-SÁNCHEZ G, et al. Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis[J]. Journal of Hazardous Materials, 2009, 168(1): 430-437. doi: 10.1016/j.jhazmat.2009,168(1):430-437.
[22] SHI-QI TIAN, L W. Degradation of organic pollutants by ferratebiochar Enhanced formation of strong intermediate oxidative iron species[J]. Water Research, 2020 , 183 : 116054. DOI: 10.1016/j.watres.2020.116054.
[23] LIU A, WANG W, LIU J, et al. Nanoencapsulation of arsenate with nanoscale zero-valent iron (nZVI): A 3D perspective[J]. Science Bulletin, 2018, 63(24): 1641-1648. doi: 10.1016/j.scib.2018.12.002