[1] |
周伟伦, 廖正家, 陈涛等. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-8.
|
[2] |
国家环境保护总局, 中华人民共和国国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S].
|
[3] |
陈莹, 陈炳辉, 邹琦等. 粤北大宝山AMD水-表层沉积物的重金属分布特征及其影响因素[J]. 环境科学学报, 2018, 38(01): 133-41.
|
[4] |
孙旭. 包头含稀土选铁尾矿磁化焙烧及物相转变实验研究[D]. 东北大学, 2014.
|
[5] |
DAI L, WANG Y, LIU Y, et al. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass[J]. Science of The Total Environment, 2020, 749: 142386. doi: 10.1016/j.scitotenv.2020.142386
|
[6] |
TAN Y L, ABDULLAH A Z, HAMEED B H. Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: Pyrolysis behavior and product analyses[J]. Bioresource Technology, 2017, 243: 85-92. doi: 10.1016/j.biortech.2017.06.015
|
[7] |
AL ARNI S. Comparison of slow and fast pyrolysis for converting biomass into fuel[J]. Renewable Energy, 2018, 124: 197-201. doi: 10.1016/j.renene.2017.04.060
|
[8] |
MALIUTINA K, TAHMASEBI A, YU J, et al. Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor[J]. Energy Conversion and Management, 2017, 151: 426-38. doi: 10.1016/j.enconman.2017.09.013
|
[9] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 固体生物质燃料工业分析方法: GB 28731-2012[S].
|
[10] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 林业生物质原料分析方法 多糖及木质素含量的测定: GB 35818-2018
|
[11] |
HILBERS T J, WANG Z, PECHA B, et al. Cellulose-Lignin interactions during slow and fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 114: 197-207. doi: 10.1016/j.jaap.2015.05.020
|
[12] |
SONG Y, HU J, LIU J, et al. Catalytic effects of CaO, Al2O3, Fe2O3, and red mud on Pteris vittata combustion: Emission, kinetic and ash conversion patterns[J]. Journal of Cleaner Production, 2020, 252: 119646. doi: 10.1016/j.jclepro.2019.119646
|
[13] |
LIU H, LIU J, HUANG H, et al. Optimizing bioenergy and by-product outputs from durian shell pyrolysis[J]. Renewable Energy, 2021, 164: 407-18. doi: 10.1016/j.renene.2020.09.044
|
[14] |
HU J, SONG Y, LIU J, et al. Combustions of torrefaction-pretreated bamboo forest residues: Physicochemical properties, evolved gases, and kinetic mechanisms[J]. Bioresource Technology, 2020, 304: 122960. doi: 10.1016/j.biortech.2020.122960
|
[15] |
ZHANG Z, PANG S. Experimental investigation of biomass devolatilization in steam gasification in a dual fluidised bed gasifier[J]. Fuel, 2017, 188: 628-35. doi: 10.1016/j.fuel.2016.10.074
|
[16] |
PARTHASARATHY P, NARAYANAN K S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield-A review[J]. Renewable Energy, 2014, 66: 570-9. doi: 10.1016/j.renene.2013.12.025
|
[17] |
YU D, JIN G, PANG Y, et al. Gas Characteristics of Pine Sawdust Catalyzed Pyrolysis by Additives[J]. Journal of Thermal Science, 2021, 30(1): 333-42. doi: 10.1007/s11630-020-1244-z
|
[18] |
WU S, SHEN D, HU J, et al. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 90: 209-17. doi: 10.1016/j.biombioe.2016.04.012
|
[19] |
CAO L, YU I K M, XIONG X, et al. Biorenewable hydrogen production through biomass gasification: A review and future prospects[J]. Environmental Research, 2020, 186: 109547. doi: 10.1016/j.envres.2020.109547
|
[20] |
郭朝强, 尚双, 兰奎等. 不同含水率污泥和小麦秸秆混合热解制备富氢合成气[J]. 环境工程, 2020, 38(05): 160-4+214.
|
[21] |
ZHANG B, ZHANG L, YANG Z, et al. Hydrogen-rich gas production from wet biomass steam gasification with CaO/MgO[J]. International Journal of Hydrogen Energy, 2015, 40(29): 8816-23. doi: 10.1016/j.ijhydene.2015.05.075
|
[22] |
ZHOU H, LONG Y, MENG A, et al. The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves[J]. Thermochimica Acta, 2013, 566: 36-43. doi: 10.1016/j.tca.2013.04.040
|
[23] |
YU J, PATERSON N, BLAMEY J, et al. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass[J]. Fuel, 2017, 191: 140-9. doi: 10.1016/j.fuel.2016.11.057
|
[24] |
ZHAO C, JIANG E, CHEN A. Volatile production from pyrolysis of cellulose, hemicellulose and lignin[J]. Journal of the Energy Institute, 2017, 90(6): 902-13. doi: 10.1016/j.joei.2016.08.004
|
[25] |
YUAN X, HE T, CAO H, et al. Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods[J]. Renewable Energy, 2017, 107: 489-96. doi: 10.1016/j.renene.2017.02.026
|
[26] |
HOSOYA T, KAWAMOTO H, SAKA S. Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 118-25. doi: 10.1016/j.jaap.2007.01.006
|
[27] |
WU X, BA Y, WANG X, et al. Evolved gas analysis and slow pyrolysis mechanism of bamboo by thermogravimetric analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry[J]. Bioresource Technology, 2018, 266: 407-12. doi: 10.1016/j.biortech.2018.07.005
|
[28] |
CHEN C, QU B, WANG W, et al. Rice husk and rice straw torrefaction: Properties and pyrolysis kinetics of raw and torrefied biomass[J]. Environmental Technology & Innovation, 2021, 24: 101872.
|
[29] |
林顺洪, 李伟, 柏继松, 等. TG-FTIR研究生物质成型燃料热解与燃烧特性[J]. 环境工程学报, 2017, 11(11): 6092-7.
|
[30] |
HE Y, CHANG C, LI P, et al. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis[J]. Bioresource Technology, 2018, 259: 294-303. doi: 10.1016/j.biortech.2018.03.043
|
[31] |
YEO J Y, CHIN B L F, TAN J K, et al. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics[J]. Journal of the Energy Institute, 2019, 92(1): 27-37. doi: 10.1016/j.joei.2017.12.003
|
[32] |
ZHOU L, ZHANG G, SCHURZ M, et al. Kinetic study on CO2 gasification of brown coal and biomass chars: reaction order[J]. Fuel, 2016, 173: 311-9. doi: 10.1016/j.fuel.2016.01.042
|
[33] |
姚丛雪. 水稻和玉米的热解动力学及机理研究[D]. 中国科学技术大学, 2020.
|