[1] 罗瑞, 陈旺, 张进, 等. 碱处理和掺氮耦合改性对活性炭纤维吸附甲醛性能的影响[J]. 环境工程学报, 2018, 12(10): 2791-2796. doi: 10.12030/j.cjee.201804158
[2] LIU R F, LI W B, PENG A Y. A facile preparation of TiO2/ACF with C-Ti bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal[J]. Applied Surface Science, 2018, 427: 608-616. doi: 10.1016/j.apsusc.2017.07.209
[3] LIU H X, WANG M, ZHANG X Q, et al. High efficient photocatalytic hydrogen evolution from formaldehyde over sensitized Ag@Ag-Pd alloy catalyst under visible light irradiation[J]. Applied Catalysis B-Environmental, 2018, 237: 563-573. doi: 10.1016/j.apcatb.2018.06.028
[4] LI J, ZHAO W H, WANG J, et al. Noble metal-free modified ultrathin carbon nitride with promoted molecular oxygen activation for photocatalytic formaldehyde oxidization and DFT study[J]. Applied Surface Science, 2018, 458: 59-69. doi: 10.1016/j.apsusc.2018.07.015
[5] ZHANG S, ZHUO Y, EZUGWU C I, et al. Synergetic molecular oxygen activation and catalytic oxidation of formaldehyde over defective MIL-88B(Fe) nanorods at room temperature[J]. Environmental Science & Technology, 2021, 55(12): 8341-8350.
[6] LI S, EZUGWU C I, ZHANG S, et al. Co-doped MgAl-LDHs nanosheets supported Au nanoparticles for complete catalytic oxidation of HCHO at room temperature[J]. Applied Surface Science, 2019, 487: 260-271. doi: 10.1016/j.apsusc.2019.05.083
[7] YAO C K, YUAN A L, ZHANG H H, et al. Facile surface modification of textiles with photocatalytic carbon nitride nanosheets and the excellent performance for self-cleaning and degradation of gaseous formaldehyde[J]. Journal of Colloid and Interface Science, 2019, 533: 144-153. doi: 10.1016/j.jcis.2018.08.058
[8] SONG S Q, LU C H, WU X, et al. Strong base g-C3N4 with perfect structure for photocatalytically eliminating formaldehyde under visible-light irradiation[J]. Applied Catalysis B-Environmental, 2018, 227: 145-152. doi: 10.1016/j.apcatb.2018.01.014
[9] 刘菊荣, 苏晨光, 董雅鑫, 等. Pd-Na/Al2O3催化剂的表征及室温下催化氧化甲醛的性能[J]. 环境工程学报, 2020, 14(8): 2203-2210.
[10] YANG Y, ZHANG C, LAI C, et al. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management[J]. Advances in Colloid and Interface Science, 2018, 254: 76-93. doi: 10.1016/j.cis.2018.03.004
[11] ZOU Q, ZHANG Z P, LI H F, et al. Synergistic removal of organic pollutant and metal ions in photocatalysis-membrane distillation system[J]. Applied Catalysis B-Environmental, 2020, 264: 118463. doi: 10.1016/j.apcatb.2019.118463
[12] LI X B, XIONG J, GAO X M, et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. Journal of Hazardous Materials, 2020, 387: 121690. doi: 10.1016/j.jhazmat.2019.121690
[13] JU B Q, YANG F, HUANG K, et al. Fabrication, characterization and photocatalytic mechanism of a novel Z-scheme BiOBr/Ag3PO4@rGO composite for enhanced visible light photocatalytic degradation[J]. Journal of Alloys and Compounds, 2020, 815: 151886. doi: 10.1016/j.jallcom.2019.151886
[14] YU X, SHI J J, FENG L J, et al. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Applied Surface Science, 2017, 396: 1775-1782. doi: 10.1016/j.apsusc.2016.11.219
[15] ZHU Z H, GUO F, XU Z H, et al. Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite[J]. RSC Advances, 2020, 10(20): 11929-11938. doi: 10.1039/D0RA01741H
[16] LIU S H, LIN W X. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light responsive photocatalytic coatings for degradation of indoor formaldehyde[J]. Journal of Hazardous Materials, 2019, 368: 468-476. doi: 10.1016/j.jhazmat.2019.01.082
[17] ZHANG G X, SUN Z M, DUAN Y W, et al. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde[J]. Applied Surface Science, 2017, 412: 105-112. doi: 10.1016/j.apsusc.2017.03.198
[18] ALLAGUI L, B CHOUCHENE, T GRIES, et al. Core/shell rGO/BiOBr particles with visible photocatalytic activity towards water pollutants[J]. Applied Surface Science, 2019, 490: 580-591. doi: 10.1016/j.apsusc.2019.06.091
[19] XU L C, SUN W, ZHANG L, et al. Facile synthesis of alpha-Fe2O3/diatomite composite for visible light assisted degradation of Rhodamine 6G in aqueous solution[J]. Journal of Materials Science-Materials in Electronics, 2017, 28(6): 4661-4668. doi: 10.1007/s10854-016-6105-x
[20] CHENG H, HUANG B, WANG Z, et al. One-pot miniemulsion-mediated route to BiOBr hollow microspheres with highly efficient photocatalytic activity[J]. Chemistry-a European Journal, 2011, 17(29): 8039-8043. doi: 10.1002/chem.201100564
[21] XU F Y, ZHANG L Y, CHENG B, et al. Direct Z-Scheme TiO2/NiS Core-Shell Hybrid Nanofibers with Enhanced Photocatalytic H2-Production Activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12291-12298.
[22] ZOU X J, YUAN C Y, DONG Y Y, et al. Lanthanum orthovanadate/bismuth oxybromide heterojunction for enhanced photocatalytic air purification and mechanism exploration[J]. Chemical Engineering Journal, 2020, 379: 122380. doi: 10.1016/j.cej.2019.122380
[23] CHENG L, TIAN Y L, ZHANG J D. Construction of p-n heterojunction film of Cu2O/alpha-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline[J]. Journal of Colloid and Interface Science, 2018, 526: 470-479. doi: 10.1016/j.jcis.2018.04.106
[24] LI X, YU J, LOW J, et al. Engineering heterogeneous semiconductors for solar water splitting[J]. Journal of Materials Chemistry A, 2015, 3(6): 2485-2534. doi: 10.1039/C4TA04461D
[25] QIAO X Q, ZHANG Z W, LI Q H, et al. In situ synthesis of n–n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr(VI)[J]. Journal of Materials Chemistry A, 2018, 6(45): 22580-22589. doi: 10.1039/C8TA08294D
[26] THOMMES M, K KANEKO, A V NEIMARK, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution[J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069. doi: 10.1515/pac-2014-1117
[27] LI W J, DU D D, YAN T J, et al. Relationship between surface hydroxyl groups and liquid-phase photocatalytic activity of titanium dioxide[J]. Journal of Colloid and Interface Science, 2015, 444: 42-48. doi: 10.1016/j.jcis.2014.12.052
[28] SHI Y Y, QIAO Z W, LIU Z L, et al. Cerium doped Pt/TiO2 for catalytic oxidation of low concentration formaldehyde at room temperature[J]. Catalysis Letters, 2019, 149(5): 1319-1325. doi: 10.1007/s10562-019-02684-z
[29] ZHU M P, Y MUHAMMAD, HU P, et al. Enhanced interfacial contact of dopamine bridged melamine-graphene/TiO2 nano-capsules for efficient photocatalytic degradation of gaseous formaldehyde[J]. Applied Catalysis B-Environmental, 2018, 232: 182-193. doi: 10.1016/j.apcatb.2018.03.061
[30] SUN D, LE Y, JIANG C J, et al. Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature[J]. Applied Surface Science, 2018, 441: 429-437. doi: 10.1016/j.apsusc.2018.02.001
[31] LING Y L, DAI Y Z, ZHOU J H. Fabrication and high photoelectrocatalytic activity of scaly BiOBr nanosheet arrays[J]. Journal of Colloid and Interface Science, 2020, 578: 326-337. doi: 10.1016/j.jcis.2020.05.111
[32] WANG P, WANG J, WANG X F, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B-Environmental, 2013, 132: 452-459.