[1] SUN Y S, ZHU X R, HAN Y X, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study[J]. Journal of Cleaner Production, 2020, 261: 121221. doi: 10.1016/j.jclepro.2020.121221
[2] 2020中国环境统计年鉴[EB/OL]. [2020-1-1]. http://www.mee.gov.cn.
[3] BUCH A C, NIEMEYER J C, MARQUES E D, et al. Ecological risk assessment of trace metals in soils affected by mine tailings[J]. Journal of Hazardous Materials, 2021, 403: 123852. doi: 10.1016/j.jhazmat.2020.123852
[4] ŽIBRET G, GOSAR M, MILER M, et al. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies[J]. Land Degradation & Development, 2018, 29(12): 4457-4470.
[5] WANG G W, NING X A, LU X W, et al. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks[J]. Waste Management, 2019, 93: 112-121. doi: 10.1016/j.wasman.2019.04.001
[6] 周伟伦, 廖正家, 陈涛, 等. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678.
[7] 严捍东, 陈秀峰. 粉煤灰和铁尾矿对烧结海泥多孔砖泛霜程度的影响[J]. 环境工程学报, 2012, 6(8): 2846-2852.
[8] LI P W, LUO S H, ZHANG L, et al. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment[J]. Separation and Purification Technology, 2021, 276: 119380. doi: 10.1016/j.seppur.2021.119380
[9] LI W B, HAN Y X, LIU X, et al. Effect of fluidized magnetizing roasting on iron recovery and transformation of weakly magnetic iron mineral phase in iron tailings[J]. Physicochemical Problems of Mineral Processing, 2019, 55(4): 906-916.
[10] YUAN S, ZHOU W T, HAN Y X, et al. Individual enrichment of manganese and iron from complex refractory ferromanganese ore by suspension magnetization roasting and magnetic separation[J]. Powder Technology, 2020, 373: 689-701. doi: 10.1016/j.powtec.2020.07.005
[11] 黄玥, 陈海斌, 蒙李燕, 等. 木屑对铁尾矿磁化焙烧磁选工艺的影响[J]. 环境工程学报, 2020, 14(11): 1-8.
[12] LI Y J, ZHANG Q, YUAN S, et al. High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation[J]. Powder Technology, 2021, 379: 466-477. doi: 10.1016/j.powtec.2020.10.005
[13] SKRINSKY J, VERES J, KOLONICNY J. Explosion characteristics of blast furnace gas[J]. Inzynieria Mineralna, 2018, 19(1): 131-136.
[14] COUHERT C, COMMANDRE J-M, SALVADOR S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin?[J]. Fuel, 2009, 88(3): 408-417. doi: 10.1016/j.fuel.2008.09.019
[15] 中华人民共和国质量监督检验检疫总局, 中国标准化管理委员会. 铁矿石《总铁含量的测定》三氯化钛还原重铬酸钾滴定法(常规方法): GB/T 6730.65-2009 [S]. 北京: 中国环境科学出版社, 2009
[16] ZHOU D D, CHENG S S, WANG Y S, et al. The production of large blast furnaces during 2016 and future development of ironmaking in China[J]. Ironmaking & Steelmaking, 2017, 44(10): 714-720.
[17] YUAN S, ZHOU W T, HAN Y X, et al. Selective enrichment of iron from fine-grained complex limonite using suspension magnetization roasting followed by magnetic separation[J]. Separation Science and Technology, 2019, 55(18): 3427-3437.
[18] DWORZANOWSKI M. Maximizing the recovery of fine iron ore using magnetic separation[J]. Journal - South African Institute of Mining and Metallurgy, 2012, 112(3): 197-202.
[19] GUO X F, ZHANG M R, REN W J, et al. Influence of particle size on the magnetism of magnetite and the development of an energy-efficient three-product magnetic separator[J]. Separation Science and Technology, 2020, 56(8): 1397-1406.
[20] TANG Z D, ZHANG Q, SUN Y S, et al. Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation[J]. Resources, Conservation and Recycling, 2021, 172: 105680. doi: 10.1016/j.resconrec.2021.105680
[21] YUAN S, ZHOU W T, HAN Y X, et al. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology[J]. Minerals Engineering, 2020, 152: 106359. doi: 10.1016/j.mineng.2020.106359
[22] YUAN S, LIU X, GAO P, et al. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud[J]. Journal of Hazardous Materials, 2020, 394: 122579. doi: 10.1016/j.jhazmat.2020.122579
[23] YUAN S, ZHANG Q, YIN H, et al. Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution[J]. Journal of Hazardous Materials, 2020, 404(Pt B): 124067.
[24] YUAN S, ZHOU W T, HAN Y X, et al. An innovative technology for full component recovery of iron and manganese from low grade iron-bearing manganese ore[J]. Powder Technology, 2020, 373: 73-81. doi: 10.1016/j.powtec.2020.06.032
[25] GAO W G, YAN J C, QIAN L B, et al. Surface catalyzing action of hematite (α-Fe2O3) on reduction of Cr(VI) to Cr(III) by citrate[J]. Environmental Technology & Innovation, 2018, 9: 82-90.
[26] KENDELEWICZ T, LIU P, DOYLE C S, et al. Spectroscopic study of the reaction of aqueous Cr(VI) with Fe3O4 (111) surfaces[J]. Surface Science, 2000, 469(2-3): 144-163. doi: 10.1016/S0039-6028(00)00808-6
[27] OMRAN M, FABRITIUS T, ELMAHDY A M, et al. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore[J]. Applied Surface Science, 2015, 345(1): 127-140.