[1] |
MOZAFFAR A, Zhang Y L. Atmospheric volatile organic compounds (VOCs) in China: a review[J]. Current Pollution Reports, 2020, 6(3): 250-63. doi: 10.1007/s40726-020-00149-1
|
[2] |
HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. doi: 10.1021/acs.chemrev.8b00408
|
[3] |
PAULIS M, PEYRARD H, MONTES M. Influence of chlorine on the activity and stability of Pt/Al2O3 catalysts in the complete oxidation of toluene[J]. Journal of Catalysis, 2001, 199(1): 30-40. doi: 10.1006/jcat.2000.3146
|
[4] |
HUANG HB, XU Y, FENG QY, et al. Low temperature catalytic oxidation of volatile organic compounds: A review[J]. Catalysis Science & Technology, 2015, 5(5): 2649-2669.
|
[5] |
REN QM, FENG ZT, MO SP, et al. 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene[J]. Catalysis Today, 2019, 332: 160-167. doi: 10.1016/j.cattod.2018.06.053
|
[6] |
赵海楠, 王健, 刘国才, 等. 氧化还原共沉淀法制备的二元锰氧化物催化剂催化氧化苯的效果[J]. 环境工程学报, 2020, 14(3): 701-708.
|
[7] |
NIKAWA T, NAYA S, KIMURA T, et al. Rapid removal and subsequent low-temperature mineralization of gaseous acetaldehyde by the dual thermos-catalysis of gold nanoparticle-loaded titanium(IV) oxide[J]. Journal of Catalysis, 2015, 326: 9-14. doi: 10.1016/j.jcat.2015.03.005
|
[8] |
安霓虹. 负载型铂催化剂上甲醛的CO低温催化氧化反应性能研究[D]. 长春: 吉林大学, 2012.
|
[9] |
李雨馨. 微波辅助乙二醇法制备高性能碳载铂催化剂[D]. 南京: 南京大学, 2019.
|
[10] |
刘菊荣, 苏晨光, 董雅鑫, 等. Pd-Na/Al2O3催化剂的表征及室温下催化氧化甲醛的性能[J]. 环境工程学报, 2020, 14(8): 2203-2210.
|
[11] |
彭若斯. 二氧化铈负载铂催化剂催化氧化甲苯的性能与反应机理研究[D]. 广州: 华南理工大学, 2017.
|
[12] |
王奇. 介孔Co3O4负载贵金属Pt催化剂对乙炔氧化消除的研究[D]. 北京: 中国石油大学(北京), 2018.
|
[13] |
MENG M, ZHA Y Q, LUO J Y, et al. A study on the catalytic synergy effect between noble metals and cobalt phases in Ce-Al-O supported catalysts[J]. Applied Catalysis A-General. 2006, 301(2): 145-151.
|
[14] |
WANG Q, LIU J, LI YH, et al. Mesoporous Co3O4 supported Pt catalysts for low-temperature oxidation of acetylene[J]. RSC Advances, 2017, 7(30): 18592-18600. doi: 10.1039/C7RA02266B
|
[15] |
CARABINEIRO SAC, CHEN X, KONSOLAKIS M, et al. Catalytic oxidation of toluene on Ce-Co and La-Co mixed oxides synthesized by extirpating and evaporation methods[J]. Catalysis Today, 2015, 244: 161-171. doi: 10.1016/j.cattod.2014.06.018
|
[16] |
FAURE B, ALPHONSE P. Co-Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature[J]. Applied Catalysis B:Environmental, 2016, 180: 715-725. doi: 10.1016/j.apcatb.2015.07.019
|
[17] |
张维东. 纳米钴氧化物催化剂的合成及对丙烷的完全催化氧化研究[D]. 武汉: 武汉大学, 2017.
|
[18] |
喻成龙, 杨文亭, 夏良海, 等. Mn-Ce复合氧化物微球的制备及其催化氧化甲苯性能[J]. 环境工程学报, 2020, 14(6): 1554-1562. doi: 10.12030/j.cjee.201908016
|
[19] |
陈柄旭. 非热等离子体改性Pt/CeO2催化氧化甲苯性能的研究[D]. 广州: 华南理工大学, 2019.
|
[20] |
冯振涛. 铈基催化剂的可控制备及其催化降解甲苯机理研究[D]. 广州: 华南理工大学, 2019.
|
[21] |
ZHANG S, LIU S J, ZHU X C, et al. Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts[J]. Applied Surface Science, 2019, 479: 1132-1140. doi: 10.1016/j.apsusc.2019.02.118
|
[22] |
GUO YL, WEN MC, LI GY, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review[J]. Applied Catalysis B:Environmental, 2021: 281.
|
[23] |
谭伟, 袁震, 蒋进元, 等. 不同形貌MnO2及其负载Au催化剂的制备与CO和甲苯催化氧化性能研究[J]. 环境工程技术学报, 2018, 8(2): 142-148. doi: 10.3969/j.issn.1674-991X.2018.02.019
|
[24] |
LIOTTA LF. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B:Environmental, 2010, 100(3/4): 403-412. doi: 10.1016/j.apcatb.2010.08.023
|
[25] |
SANTOS VP, CARABINEIRO SAC, TAVARES PB, Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 198-205.
|
[26] |
MAO J Z, YAN X H, GU H Z, et al. Hydrogenation of o-chloronitrobenzene by platinum nanoparticles on activated carbon[J]. Chinese Journal of Catalysis, 2009, 30(3): 182-194. doi: 10.1016/S1872-2067(08)60095-9
|
[27] |
RAMIREZ E, ERADES L, PHILIPPOT K, et al. Shape control of platinum nanoparticles[J]. Advanced Functional Materials, 2007, 17(13): 2219-2228. doi: 10.1002/adfm.200600633
|
[28] |
RUI Z B, CHEN L Y, CHEN H Y, et al. Strong metal-support interaction in Pt/TiO2 Induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion[J]. Industrial & Engineering Chemistry Research, 2014, 53(41): 15879-15888.
|
[29] |
HANSEN TK, HOJ M, HANSEN BB, et al. The effect of Pt particle size on the oxidation of CO, C3H6, and NO over Pt/Al2O3 for diesel exhaust aftertreatment[J]. Topics in Catalysis, 2017, 60(17/18): 1333-44. doi: 10.1007/s11244-017-0818-9
|
[30] |
SEO P W, CHOI H J, HONG S I, et al. A study on the characteristics of CO oxidation at room temperature by metallic Pt[J]. Journal of Hazardous Materials, 2010, 178(1-3): 917-925. doi: 10.1016/j.jhazmat.2010.02.025
|
[31] |
WANG M M, CHEN D Y, LI N J, et al. Nanocage-shaped Co3-xZrxO4 solid-solution supports loaded with Pt nanoparticles as effective catalysts for the enhancement of toluene oxidation[J]. Small, 2020, 16(51): 9.
|
[32] |
TENG F, CHEN M, LI G, et al. High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods[J]. Applied Catalysis B:Environmental, 2011, 110: 133-140. doi: 10.1016/j.apcatb.2011.08.035
|
[33] |
WU H, PANTALEO G, DI CARLO G, et al. Co3O4 particles grown over nanocrystalline CeO2: Influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation[J]. Catalysis Science & Technology, 2015, 5(3): 1888-1901.
|
[34] |
PENG R S, SUN X B, LI S J, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Chemical Engineering Journal, 2016, 306: 1234-1246. doi: 10.1016/j.cej.2016.08.056
|
[35] |
孙西勃. 二氧化铈纳米棒负载纳米贵金属催化氧化甲苯研究[D]. 广州: 华南理工大学, 2017.
|