[1] 李干杰. 中国环境质量状况公报[M]. 北京: 中华人民共和国生态环境部, 2018.
[2] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323: 1014-1015. doi: 10.1126/science.1167755
[3] MARTINS G, PEIXOTO L, BRITO A G, et al. Phosphorus-iron interaction in sediments: can an electrode minimize phosphorus release from sediments? [J] Reviews in Environment Science and Bio/Technology, 2014, 13: 265-275.
[4] 延霜. 水体-沉积物界面氮迁移转化的生物化学过程[D]. 西安: 西安建筑科技大学, 2010.
[5] YIN H B, HAN M X, KONG M, et al. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorus loading from shallow eutrophic lakes[J]. Environmental Pollution, 2016, 219: 568-579. doi: 10.1016/j.envpol.2016.06.011
[6] MCGOLDRICK D J, MURPHY E W. Concentration and distribution of contaminants in lake trout and walleye from Laurentian Great Lakes (2008-2012)[J]. Environmental Pollution, 2016, 217: 85-96. doi: 10.1016/j.envpol.2015.12.019
[7] WU Y H, WEN Y J, ZHOU J X, et al. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen[J]. KSCE Journal of Civil Engineering, 2014, 18(1): 323-332. doi: 10.1007/s12205-014-0192-0
[8] SCHINDLER D W. Evolution of phosphorus limitation in lakes[J]. Science, 1977, 195: 260-262. doi: 10.1126/science.195.4275.260
[9] SCHELSKE C L. Eutrophication: Focus on phosphorus[J]. Science, 2009, 324: 722-722. doi: 10.1126/science.324_722
[10] ABELL J M, ÖZKUNDAKCI D, HAMILTON D P. Nitrogen and phosphorus limitation of phytoplankton growth in new Zealand Lakes: Implications for eutrophication control[J]. Ecosystems, 2010, 13: 966-977. doi: 10.1007/s10021-010-9367-9
[11] 李卫平, 李畅游, 史小红, 等. 内蒙古乌梁素海氮、磷营养元素分布特征及地球化学环境分析[J]. 资源调查与环境, 2008, 29(2): 131-138. doi: 10.3969/j.issn.1671-4814.2008.02.008
[12] 乌兰, 王俊. 乌梁素海2014—2015水环境质量评价分析[J]. 内蒙古师范大学学报, 2017, 46(4): 885-890.
[13] 肖博文, 成文连, 姚荣, 等. 内蒙古乌梁素海 N、P 的变化趋势研究[J]. 水资源与水工程学报, 2015, 26(1): 43-51. doi: 10.11705/j.issn.1672-643X.2015.01.008
[14] 李晓霞, 白洋. 浅谈河套灌区农田氮磷流失量及对乌梁素海输入量的估算[J]. 内蒙古环境科学, 2009, 21(3): 44-49.
[15] 冯湘云, 李娇, 白妙馨. 乌梁素海流域污染来源分析[J]. 科技创新与应用, 2015(14): 116-117.
[16] 王一舒, 吴仁人, 荣楠. 乌梁素海氮磷污染通量输入及海区水质空间异质性研究[C]//中国环境科学学会. 2020中国环境科学学会科学技术年会论文集: 第二卷, 2020: 1540-1546.
[17] 乌梁素海[EB/OL]. (2006-04-26)[2022-01-31]. https://baike.baidu.com/item/%E4%B9%8C%E6%A2%%E7%B4%A0%E6%B5%B7/1102650?fr=aladdin.
[18] CHIAAPMAN D V. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring [M]. Melbourne Madras: Chapman & Hall, 1992.
[19] SCHUBLE J R. Report of workshop “The second phase of an assessment of alternatives to biological nutrient removal at sewage treatment plants for alleviating hypoxia in western Long Island Sound”[R]. NYSB: Marine Science Research Center, 1991.
[20] 国家环保总局. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国环境科学出版社, 2002.
[21] 赵锁志, 孔凡吉, 赵军, 等. 内蒙古乌梁素海底泥总氮空间分布特征[J]. 现代地质, 2009, 23(1): 82-85. doi: 10.3969/j.issn.1000-8527.2009.01.012
[22] WANG Q P, LIAO Z Y, YAO D X, et al. Phosphorus immobilization in water and sediment using iron-based materials: A review[J]. Science of the Total Environment, 2021, 767: 144246. doi: 10.1016/j.scitotenv.2020.144246
[23] 谢玉斌, 权全, 邹昊, 等. 人工湿地挺水植物净水能力的 Meta 分析[J]. 中国水土保持, 2021, 8(4): 50-53. doi: 10.3969/j.issn.1000-0941.2021.04.017
[24] 段晓男, 王效科, 欧阳志云, 等. 乌梁素海野生芦苇群落生物量及影响因子分析[J]. 植物生态学报, 2004, 28(2): 246-251. doi: 10.3321/j.issn:1005-264X.2004.02.016
[25] 李兴, 李畅游, 勾芒芒, 等. 挺水植物对湖泊水质数值模拟过程的影响[J]. 环境科学, 2010, 21(12): 2890-2895.
[26] 商传莲. 物理材料与沉水植物组合对富营养化水体的水质改善效果研究[D]. 上海: 华东理工大学, 2012.
[27] 常宝亮, 上官凌飞, 沈志国, 等. 六种沉水植物对三种不同氮磷浓度水体的净化效果[J]. 给水排水, 2021, 47(S1): 230-236.
[28] 林春风, 曹国军, 武鹏, 等. 四种沉水植物对富营养化水体的净化效果研究[J]. 安徽农业科学, 2012, 40(10): 6083-6085. doi: 10.3969/j.issn.0517-6611.2012.10.131
[29] 钟继承, 刘国锋, 范成新, 等. 湖泊底泥疏浚环境效应: I. 内源磷释放控制作用[J]. 湖泊科学, 2009, 21(1): 84-93. doi: 10.3321/j.issn:1003-5427.2009.01.011
[30] LIU X, SHENG H, JIANG S Y, et al. Intensification of phosphorus cycling in China since the 1600s[J]. Proceedings of the National Academy of Sciences, 2016, 113: 2609-2614. doi: 10.1073/pnas.1519554113
[31] TONG Y D, ZHANG W, WANG X J, et al. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006[J]. Nature Geoscience, 2017, 10: 507-511. doi: 10.1038/ngeo2967
[32] 徐熊鲲, 谢翼飞, 陈政阳, 等. 曝气强化微生物功能菌修复黑臭水体[J]. 环境工程学报, 2017, 11(8): 4559-4565. doi: 10.12030/j.cjee.201606021
[33] 李畅游, 史小红. 乌梁素海沉积物环境地球化学特征研究[M]. 北京: 科学出版社, 2014.
[34] 王立志. 两种沉水植物对间隙水磷浓度的影响[J]. 生态学报, 2015, 35(4): 1051-1058.
[35] 张苗, 李明梦, 刘律, 等. 超富营养城市湖泊原位生态修复效果分析: 以武汉南湖为例[J]. 海洋与湖沼, 2021, 52(6): 1399-1407. doi: 10.11693/hyhz20210500116
[36] WU Z, LIU Y, LIANG Z, et al. Internal cycling not external loading, decides the nutrient limitation in eutrophic lake: A dynanmic model with temporal Bayesian hierarchical inference[J]. Water Research, 2017, 116: 231-240. doi: 10.1016/j.watres.2017.03.039
[37] DING S M, WANG Y, WANG D, et al. In situ, high-resolution evidence for iron-coupled mobilization of phosphorus in sediments[J]. Scientific Report, 2016, 6: 2434.
[38] ARONSON J, CLEWELL A F, BLIGNAUT J N, et al. Ecological restoration: A new frontier for nature conservation andeconomics[J]. Journal for Nature Conservation, 2006, 14(3/4): 135-139.
[39] 卢俊平, 马太玲, 刘廷玺, 等. 大河口水库底泥释磷强度环境影响机理研究[J]. 环境科学与技术, 2017, 40(7): 72-78.