[1] MOLINA A, EDDINGS E G, PERSHING D W, et al. Char nitrogen conversion: implications to emissions from coal-fired utility boilers[J]. Progress in Energy and Combustion Science, 2000, 26(4): 507-531.
[2] 郦建国,朱法华,孙雪丽. 中国火电大气污染防治现状及挑战[C]//.第十八届中国电除尘学术会议论文集.[出版者不详],2019:43-52.
[3] CHENG L M, JI J Q, WEI Y J, et al. A note on large-size supercritical CFB technology development[J]. Powder Technology, 2020, 363: 398-407. doi: 10.1016/j.powtec.2019.12.04
[4] 茹宇, 袁野, 朱海, 等. 大容量循环流化床锅炉SCR与SNCR脱硝耦合性能研究[J]. 锅炉技术, 2021, 52(1): 37-42. doi: 10.3969/j.issn.1672-4763.2021.01.007
[5] 邓志鹏, 樊响, 王青. SNCR/SCR混合技术在220t/h循环流化床锅炉上的应用[J]. 山西冶金, 2016, 39(3): 64-65.
[6] 周国民, 赵海军, 龚家猷, 等. SNCR/SCR联合脱硝技术在410t/h锅炉上的应用[J]. 热力发电, 2011, 40(3): 58-61. doi: 10.3969/j.issn.1002-3364.2011.03.058
[7] 蔡小峰, 李晓芸. SNCR-SCR烟气脱硝技术及其应用 [J]. 电力环境保护, 2008 (3): 26-29. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DLHB200803008&DbName=CJFQ2008
[8] 孙哲, 刘振波. 基于智慧模型的脱硝控制系统优化[J]. 华电技术, 2020, 42(9): 37-44. doi: 10.3969/j.issn.1674-1951.2020.09.006
[9] 孙璐培. 125 MW循环流化床锅炉NOx排放软测量方法研究 [D]. 保定: 华北电力大学, 2019.
[10] ZHAI Y J, DING X D, JIN X Z, et al. Adaptive LSSVM based iterative prediction method for NOx concentration prediction in coal-fired power plant considering system delay[J]. Applied Soft Computing, 2020, 89: 106070. doi: 10.1016/j.asoc.2020.106070
[11] TAN P, HE B, ZHANG C, et al. Dynamic modeling of NOx emission in a 660 MW coal-fired boiler with long short-term memory[J]. Energy, 2019, 176: 429-436. doi: 10.1016/j.energy.2019.04.020
[12] 石铙桥. 基于历史数据的燃煤电厂SCR脱硝系统辨识与控制研究[D]. 南京: 东南大学, 2017.
[13] 刘博文. 燃煤电厂脱硝系统入口NOx浓度测量修正及喷氨量优化控制研究 [D]. 杭州: 浙江大学, 2019.
[14] 翁卫国, 刘博文, 郭一杉, 等. 基于入口NOx浓度软测量的脱硝系统先进控制研究 [J]. 锅炉制造, 2019 (5): 17-22. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GLZZ201905007&DbName=CJFQ2019.
[15] 高明明, 于浩洋, 吕俊复, 等. 循环流化床氮氧化物排放预测模型及优化控制研究[J]. 洁净煤技术, 2020, 26(3): 46-51.
[16] 斛亚旭. 基于子空间辨识的SNCR脱硝系统的多模型预测控制 [D]. 太原: 山西大学, 2019.
[17] 钟祎勍, 孙阳阳, 李杨, 等. 燃煤机组SNCR脱硝系统非线性模型研究[J]. 工业控制计算机, 2017, 30(6): 10-14. doi: 10.3969/j.issn.1001-182X.2017.06.004
[18] GUNGOR A. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels[J]. Energ Fuel, 2009, 23(5): 2475-2481. doi: 10.1021/ef8010838
[19] JI J, CHENG L, WEI Y, et al. Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model[J]. Particuology, 2020, 49: 77-87. doi: 10.1016/j.partic.2019.04.003
[20] SUN W, ZHONG W, YU A, et al. Numerical investigation on the flow, combustion, and NOx emission characteristics in a 660 MWe tangential firing ultra-supercritical boiler[J]. Advances in Mechanical Engineering, 2016, 8(2): 1-13.
[21] TAN P, XIA J, ZHANG C, et al. Modeling and reduction of NOx emissions for a 700 MW coal-fired boiler with the advanced machine learning method[J]. Energy, 2016, 94: 672-679. doi: 10.1016/j.energy.2015.11.020
[22] SMREKAR J, POTOČNIK P, SENEGAČNIK A. Multi-step-ahead prediction of NOx emissions for a coal-based boiler[J]. Applied Energy, 2013, 106: 89-99. doi: 10.1016/j.apenergy.2012.10.056
[23] 张晶. 动态矩阵控制算法研究及其应用 [D]. 青岛: 青岛科技大学, 2009.
[24] 张选平, 杜玉平, 秦国强, 等. 一种动态改变惯性权的自适应粒子群算法[J]. 西安交通大学学报, 2005, 39(10): 1039-1042. doi: 10.3321/j.issn:0253-987X.2005.10.001