[1] GUO Y, WEN M, LI G, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review[J]. Applied Catalysis B:Environmental, 2021, 281: 119447. doi: 10.1016/j.apcatb.2020.119447
[2] YANG C, MIAO G, PI Y, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. doi: 10.1016/j.cej.2019.03.232
[3] ZHANG X, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. doi: 10.1016/j.jhazmat.2017.05.013
[4] LI J, YU E, CAI S, et al. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light[J]. Applied Catalysis B:Environmental, 2019, 240: 141-152. doi: 10.1016/j.apcatb.2018.08.069
[5] WANG H, CHEN S, WANG Z, et al. A novel hybrid Bi2MoO6-MnO2 catalysts with the superior plasma induced pseudo photocatalytic-catalytic performance for ethyl acetate degradation[J]. Applied Catalysis B:Environmental, 2019, 254: 339-350. doi: 10.1016/j.apcatb.2019.05.018
[6] WANG F, DAI H, DENG J, et al. Manganese Oxides with rod-, wire-, tube-, and flower-Like Morphologies: Highly effective catalysts for the removal of Toluene[J]. Environmental Science & Technology, 2012, 46(7): 4034-4041.
[7] IKHLAQ A, KASPRZYK-HORDERN B. Catalytic ozonation of chlorinated VOCs on ZSM-5 zeolites and alumina: Formation of chlorides[J]. Applied Catalysis B:Environmental, 2017, 200: 274-282. doi: 10.1016/j.apcatb.2016.07.019
[8] LUO S, GAO L, WEI Z, et al. Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates[J]. Water Research, 2018, 137: 233-241. doi: 10.1016/j.watres.2018.03.002
[9] LUO S, WEI Z, SPINNEY R, et al. UV direct photolysis of sulfamethoxazole and ibuprofen: An experimental and modelling study[J]. Journal of Hazardous Materials, 2018, 343: 132-139. doi: 10.1016/j.jhazmat.2017.09.019
[10] LIU L, LI J, ZHANG H, et al. In situ fabrication of highly active γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene[J]. Journal of Hazardous Materials, 2019, 362: 178-186. doi: 10.1016/j.jhazmat.2018.09.012
[11] FENG S, LIU J, GAO B. Synergistic mechanism of Cu-Mn-Ce oxides in mesoporous ceramic base catalyst for VOCs microwave catalytic combustion[J]. Chemical Engineering Journal, 2022, 429: 132302. doi: 10.1016/j.cej.2021.132302
[12] ALI S, WU X, ZUHRA Z, et al. Cu-Mn-Ce mixed oxides catalysts for soot oxidation and their mechanistic chemistry[J]. Applied Surface Science, 2020, 512: 145602. doi: 10.1016/j.apsusc.2020.145602
[13] JIANG Y, GAO J, ZHANG Q, et al. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template[J]. Chemical Engineering Journal, 2019, 371: 78-87. doi: 10.1016/j.cej.2019.03.233
[14] LU H, KONG X, HUANG H, et al. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. Journal of Environmental Sciences, 2015, 32: 102-107. doi: 10.1016/j.jes.2014.11.015
[15] GAO P, WANG A, WANG X, et al. Synthesis of highly ordered Ir-containing mesoporous carbon materials by organic-organic self-assembly[J]. Chemistry of Materials, 2008, 20(5): 1881-1888. doi: 10.1021/cm702815e
[16] GUO J, LIN C, JIANG C, et al. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J]. Applied Surface Science, 2019, 475: 237-255. doi: 10.1016/j.apsusc.2018.12.238
[17] OKAL J, ZAWADZKI M. Catalytic combustion of butane on Ru/γ-Al2O3 catalysts[J]. Applied Catalysis B:Environmental, 2009, 89(1-2): 22-32. doi: 10.1016/j.apcatb.2008.11.024
[18] DAI Q, BAI S, WANG J, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene[J]. Applied Catalysis B:Environmental, 2013, 142-143: 222-233. doi: 10.1016/j.apcatb.2013.05.026
[19] SANTOS V P, CARABINEIRO S A C, TAVARES P B, et al. Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts[J]. Applied Catalysis B:Environmental, 2010, 99(1-2): 198-205. doi: 10.1016/j.apcatb.2010.06.020
[20] CARRETTIN S, CONCEPCIÓN P, CORMA A, et al. Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude[J]. Angewandte Chemie International Edition, 2004, 43(19): 2538-2540. doi: 10.1002/anie.200353570
[21] GÓMEZ D M, GALVITA V V, GATICA J M, et al. TAP study of toluene total oxidation over a Co3O4/La-CeO2 catalyst with an application as a washcoat of cordierite honeycomb monoliths[J]. Physical chemistry chemical physics:PCCP, 2014, 16(23): 11447-11455. doi: 10.1039/C4CP00886C
[22] 杨卜源, 佟丽华, 左树锋, 等. 添加铈对锰基催化剂的织构-结构及其氧化还原性能的影响[J]. 中国稀土学报. 2011, 29(4): 433-438.
[23] DAI Q, WANG W, WANG X, et al. Sandwich-structured CeO2@ZSM-5 hybrid composites for catalytic oxidation of 1, 2-dichloroethane: An integrated solution to coking and chlorine poisoning deactivation[J]. Applied Catalysis B:Environmental, 2017, 203: 31-42. doi: 10.1016/j.apcatb.2016.10.009
[24] KHAN M E, KHAN M M, CHO M H. Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2-Graphene nanostructures[J]. Scientific Reports, 2017, 7(1)
[25] LIU X, ZENG J, WANG J, et al. Catalytic oxidation of methyl bromide using ruthenium-based catalysts[J]. Catalysis Science & Technology[J], 2016, 6(12): 4337-4344.
[26] ZHAO J, XI W, TU C, et al. Catalytic oxidation of chlorinated VOCs over Ru/TixSn1-x catalysts[J]. Applied Catalysis B:Environmental, 2020, 263: 118237. doi: 10.1016/j.apcatb.2019.118237
[27] AOUAD S, ABI-AAD E, ABOUKAÏS A. Simultaneous oxidation of carbon black and volatile organic compounds over Ru/CeO2 catalysts[J]. Applied Catalysis B:Environmental, 2009, 88(3/4): 249-256. doi: 10.1016/j.apcatb.2008.10.002
[28] LIU C, XIAN H, JIANG Z, et al. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane[J]. Applied Catalysis B:Environmental, 2015, 176-177: 542-552. doi: 10.1016/j.apcatb.2015.04.042
[29] WANG J, ZHAO H, LIU X, et al. Study on the Catalytic Properties of Ru/TiO2 Catalysts for the Catalytic Oxidation of (Chloro)-Aromatics[J]. Catalysis Letters, 2019, 149(7): 2004-2014. doi: 10.1007/s10562-019-02802-x
[30] PENG R, SUN X, LI S, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Chemical Engineering Journal, 2016, 306: 1234-1246. doi: 10.1016/j.cej.2016.08.056
[31] SCIRÈ S, MINICÒ S, CRISAFULLI C, et al. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts[J]. Applied Catalysis B:Environmental, 2003, 40(1): 43-49. doi: 10.1016/S0926-3373(02)00127-3