[1] LIU X H, LU S Y, MENG W, et al. Occurrence, source, and ecological risk of antibiotics in Dongting Lake, China [J]. Environmental Science and Pollution Research International, 2018, 25(11): 11063-11073. doi: 10.1007/s11356-018-1290-1
[2] KURNIAWAN T A, LO W H, CHAN G Y S. Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate [J]. Chemical Engineering Journal, 2006, 125(1): 35-57. doi: 10.1016/j.cej.2006.07.006
[3] QIU G L, CHEN H, SRINIVASA RAGHAVAN D S, et al. Removal behaviors of antibiotics in a hybrid microfiltration-forward osmotic membrane bioreactor for real municipal wastewater treatment [J]. Chemical Engineering Journal, 2021, 417: 129146. doi: 10.1016/j.cej.2021.129146
[4] YANG X R, CHEN Z, ZHAO W, et al. Recent advances in photodegradation of antibiotic residues in water [J]. Chemical Engineering Journal, 2021, 405: 126806. doi: 10.1016/j.cej.2020.126806
[5] BAYAN E M, PUSTOVAYA L E, VOLKOVA M G. Recent advances in TiO2-based materials for photocatalytic degradation of antibiotics in aqueous systems [J]. Environmental Technology & Innovation, 2021, 24: 101822.
[6] MURDOCH M, WATERHOUSE G I N, NADEEM M A, et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles [J]. Nature Chemistry, 2011, 3(6): 489-492. doi: 10.1038/nchem.1048
[7] LI R G, WENG Y X, ZHOU X, et al. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases [J]. Energy & Environmental Science, 2015, 8(8): 2377-2382.
[8] KAWAHARA T, OZAWA T, IWASAKI M, et al. Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method [J]. Journal of Colloid and Interface Science, 2003, 267(2): 377-381. doi: 10.1016/S0021-9797(03)00755-0
[9] WANG W, LIU X L, FANG J J, et al. TiO2@g-C3N4 heterojunction with directional charge migration behavior for photodegradation of tetracycline antibiotics [J]. Materials Letters, 2019, 236: 622-624. doi: 10.1016/j.matlet.2018.11.025
[10] HAJIPOUR P, ESLAMI A, BAHRAMI A, et al. Surface modification of TiO2 nanoparticles with CuO for visible-light antibacterial applications and photocatalytic degradation of antibiotics [J]. Ceramics International, 2021, 47(23): 33875-33885. doi: 10.1016/j.ceramint.2021.08.300
[11] ALI A, SHOEB M, LI Y, et al. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation [J]. Journal of Molecular Liquids, 2021, 324: 114696. doi: 10.1016/j.molliq.2020.114696
[12] HENG Z W, CHONG W C, PANG Y L, et al. An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation [J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105199. doi: 10.1016/j.jece.2021.105199
[13] LI T X, LI Z, HUANG T Z, et al. Carbon quantum dot-based sensors for food safety [J]. Sensors and Actuators A:Physical, 2021, 331: 113003. doi: 10.1016/j.sna.2021.113003
[14] YUE J, ZHANG K, YU H, et al. Mechanism insights into tunable photoluminescence of carbon dots by hydroxyl radicals [J]. Journal of Materials Science, 2019, 54(8): 6140-6150. doi: 10.1007/s10853-018-03254-1
[15] CHEN P, WANG F L, CHEN Z F, et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species [J]. Applied Catalysis B:Environmental, 2017, 204: 250-259. doi: 10.1016/j.apcatb.2016.11.040
[16] WANG J, GAO M M, HO G W. Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H2 evolution [J]. Journal of Materials Chemistry A, 2014, 2(16): 5703. doi: 10.1039/c3ta15114j
[17] SHAFIQUE M, MAHR M S, YASEEN M, et al. CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye [J]. Materials Chemistry and Physics, 2022, 278: 125583. doi: 10.1016/j.matchemphys.2021.125583
[18] ZHUANG J D, DAI W X, TIAN Q F, et al. Photocatalytic degradation of RhB over TiO2 bilayer films: Effect of defects and their location [J]. Langmuir, 2010, 26(12): 9686-9694. doi: 10.1021/la100302m
[19] LIU Y, YUAN X Z, WANG H, et al. Solvothermal synthesis of graphene/BiOCl0.75Br0.25 microspheres with excellent visible-light photocatalytic activity [J]. RSC Advances, 2015, 5(42): 33696-33704. doi: 10.1039/C5RA02852C
[20] CHEN Y, LIU K R. Preparation and characterization of nitrogen-doped TiO2/diatomite integrated photocatalytic pellet for the adsorption-degradation of tetracycline hydrochloride using visible light [J]. Chemical Engineering Journal, 2016, 302: 682-696. doi: 10.1016/j.cej.2016.05.108
[21] LI T T, ZHANG S J, MENG S G, et al. Amino acid-assisted synthesis of In2S3 hierarchical architectures for selective oxidation of aromatic alcohols to aromatic aldehydes [J]. RSC Advances, 2017, 7(11): 6457-6466. doi: 10.1039/C6RA28560K
[22] LYU J Z, ZHOU Z, WANG Y H, et al. Platinum-enhanced amorphous TiO2-filled mesoporous TiO2 crystals for the photocatalytic mineralization of tetracycline hydrochloride [J]. Journal of Hazardous Materials, 2019, 373: 278-284. doi: 10.1016/j.jhazmat.2019.03.096
[23] ZHAN Y, SHANG B, CHEN M, et al. One-step synthesis of silica-coated carbon dots with controllable solid-state fluorescence for white light-emitting diodes [J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(24): e1901161. doi: 10.1002/smll.201901161
[24] MAHATO D, KHARWAR Y P, RAMANUJAM K, et al. S, N co-doped graphene quantum dots decorated TiO2 and supported with carbon for oxygen reduction reaction catalysis [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21549-21565. doi: 10.1016/j.ijhydene.2021.04.013
[25] CONG Y, LI X K, QIN Y, et al. Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity [J]. Applied Catalysis B:Environmental, 2011, 107(1/2): 128-134.
[26] LI F, TIAN F, LIU C J, et al. One-step synthesis of nanohybrid carbon dots and TiO2 composites with enhanced ultraviolet light active photocatalysis [J]. RSC Advances, 2015, 5(11): 8389-8396. doi: 10.1039/C4RA14865G
[27] WANG J, WANG C F, CHEN S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns [J]. Angewandte Chemie (International Ed. in English), 2012, 51(37): 9297-9301. doi: 10.1002/anie.201204381
[28] PHANG S J, TAN L L. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications [J]. Catalysis Science & Technology, 2019, 9(21): 5882-5905.
[29] XU Y G, LIU J, XIE M, et al. Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation [J]. Chemical Engineering Journal, 2019, 357: 487-497. doi: 10.1016/j.cej.2018.09.098
[30] HUNGE Y M, YADAV A A, KANG S W, et al. Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites [J]. Journal of Colloid and Interface Science, 2022, 606: 454-463. doi: 10.1016/j.jcis.2021.07.151
[31] FENG J W, ZHENG Z, SUN Y B, et al. Degradation of diuron in aqueous solution by dielectric barrier discharge [J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 1081-1089.
[32] RANJBARI A, DEMEESTERE K, VERPOORT F, et al. Novel kinetic modeling of thiabendazole removal by adsorption and photocatalysis on porous organic polymers: Effect of pH and visible light intensity [J]. Chemical Engineering Journal, 2022, 431: 133349. doi: 10.1016/j.cej.2021.133349
[33] SHARMA S, DUTTA V, SINGH P, et al. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review [J]. Journal of Cleaner Production, 2019, 228: 755-769. doi: 10.1016/j.jclepro.2019.04.292
[34] YU X J, LIU J J, YU Y C, et al. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites [J]. Carbon, 2014, 68: 718-724. doi: 10.1016/j.carbon.2013.11.053