[1] 刘恒源, 杨彦韬, 鲍文达, 等. 电化学法去除地下水中硝酸盐的机理研究[J]. 赤峰学院学报(自然科学版), 2021, 37(7): 46-49. doi: 10.13398/j.cnki.issn1673-260x.2021.07.011
[2] 陈骞. 浅析地下水中的硝酸盐污染[J]. 2022, 3(2): 90-92.
[3] 王诗绘, 马玉坤, 沈珍瑶. 氮氧稳定同位素技术用于水体中硝酸盐污染来源解析方面的研究进展[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 36-42.
[4] 厉彦梅. 地下水中硝酸盐的各种去除方法概述[J]. 城市地理, 2014(22): 90. doi: 10.3969/j.issn.1674-2508.2014.22.074
[5] 张懿文, 罗建中, 陈宇阳. 我国水体中硝酸盐的污染现状及危害[J]. 广东化工, 2015, 42(14): 99-100. doi: 10.3969/j.issn.1007-1865.2015.14.049
[6] 干方群, 吴珂, 马菲, 等. 水体硝酸盐检测方法的研究进展[J]. 中国无机分析化学, 2022, 12(1): 69-81. doi: 10.3969/j.issn.2095-1035.2022.01.012
[7] KUMAR P S, YAASHIKAA P R, RAMALINGAM S: Efficient removal of nitrate and phosphate using graphene nanocomposites[J]. Applications in Water Technology, 2019: 287-307.
[8] QASIM M, BADRELZAMAN M, et al. Reverse osmosis desalination: A state-of-the-art review[J]. Desalination, 2019, 459: 59-104. doi: 10.1016/j.desal.2019.02.008
[9] HEKMATZADEH A A, KARIMI J A, et al. Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments[J]. Desalination, 2012, 284: 22-31. doi: 10.1016/j.desal.2011.08.033
[10] ALIASKARI M, SCHAFER A I. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater[J]. Water Research, 2021, 190: 116683. doi: 10.1016/j.watres.2020.116683
[11] PARK J Y, YOO Y J. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 415-29. doi: 10.1007/s00253-008-1799-1
[12] NIARAGH E K, MOGHADDAM M R A, et al. Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: Economical and environmental approaches through RSM[J]. Journal of Environmental Management, 2019, 230: 245-254.
[13] LEE J B, PARK K K, EUN H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196(1/2/3): 125-134.
[14] BIESHEUVEL P M. Membrane capacitive deionization[J]. Journal of Membrane Science, 2010, 346(2): 256-262. doi: 10.1016/j.memsci.2009.09.043
[15] LIU Y H, HSI H C, LI K C, et al. Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4762-4770.
[16] CHEN L, HE F, LI F. Denitrification enhancement by electro-adsorption/reduction in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) with copper electrode[J]. Chemosphere, 2022, 291: 132732. doi: 10.1016/j.chemosphere.2021.132732
[17] BAO S, CHEN Q, ZHANG Y, et al. Optimization of preparation conditions of composite electrodes for selective adsorption of vanadium in CDI by response surface methodology[J]. Chemical Engineering Research and Design, 2021, 168: 37-45. doi: 10.1016/j.cherd.2021.01.032
[18] LI D, NING X A, YUN Y, et al. Ion-exchange polymers modified bacterial cellulose electrodes for the selective removal of nitrite ions from tail water of dyeing wastewater[J]. Journal of Environmental Sciences, 2020, 91: 62-72. doi: 10.1016/j.jes.2020.01.002
[19] KIM D I, GONZALES R R, DORJI P, et al. Efficient recovery of nitrate from municipal wastewater via MCDI using anion-exchange polymer coated electrode embedded with nitrate selective resin[J]. Desalination, 2020: 484.
[20] GAN L, WU Y, SONG H, et al. Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization[J]. Separation and Purification Technology, 2019, 212: 728-736. doi: 10.1016/j.seppur.2018.11.081
[21] BULUT U, SAYIN V O. A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing[J]. Microchemical Journal, 2023, 184: 108148. doi: 10.1016/j.microc.2022.108148
[22] ALTIN Y, BEDELOGLU A C. Polyacrylonitrile nanofiber optimization as precursor of carbon nanofibers for supercapacitors[J]. Journal of Innovative Science and Engineering (JISE), 2020, 4: 69-83. doi: 10.38088/jise.726792
[23] ABEYKOON N, BONSO J, FERRARIS J. Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/ PMMA polymer blends[J]. RSC Advances, 2015, 5: 19865-19873. doi: 10.1039/C4RA16594B
[24] GUO L Y, LU H Q, RACKEMANN D, et al. Quaternary ammonium-functionalized magnetic chitosan microspheres as an effective green adsorbent to remove high-molecular-weight invert sugar alkaline degradation products (HISADPs)[J]. Chemical Engineering Journal, 2021, 416: 129084. doi: 10.1016/j.cej.2021.129084
[25] NORHAUATI A, MUHAMMAD R, KASSIM A A. Pre-evaluation of strong base anion exchange, Amberlite IRA 958-Cl resin for nitrate removal[J]. Materials Today:Proceedings, 2019, 17: 679-685. doi: 10.1016/j.matpr.2019.06.350
[26] SABANTINA L, BOTTJER R, WEHLAGE D, et al. Morphological study of stabilization and carbonization of polyacrylonitrile/TiO2 nanofiber mats[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1558925019862242.
[27] CIPRIANI E, ZANERRI M, BRACCO P, et al. Crosslinking and carbonization processes in PAN films and nanofibers[J]. Polymer Degradation and Stability, 2016, 123: 178-188. doi: 10.1016/j.polymdegradstab.2015.11.008
[28] BOHINC K, IGLIC A. Thickness of electrical double layer. Effect of ion size[J]. Electrochimica Acta, 2001, 46(19): 3033-3040. doi: 10.1016/S0013-4686(01)00525-4
[29] SEO S J, JEON H, LEE J K, et al. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications[J]. Water Research, 2010, 44(7): 2267-75. doi: 10.1016/j.watres.2009.10.020
[30] CEN B, YANG R, LI K, et al. Covalently-bonded quaternized activated carbon for selective removal of NO3 in capacitive deionization[J]. Chemical Engineering Journal, 2021: 425.