[1] |
AGUILAR-ALARCON P, GONZALEZ S V, SIMONSEN M A, et al. Characterizing changes of dissolved organic matter composition with the use of distinct feeds in recirculating aquaculture systems via high-resolution mass spectrometry[J]. Science of the Total Environment, 2020, 749: 142326. doi: 10.1016/j.scitotenv.2020.142326
|
[2] |
马东海. 浅谈陆基水产养殖技术[J]. 农业与技术, 2012, 32(6): 105. doi: 10.3969/j.issn.1671-962X.2012.06.079
|
[3] |
陈斌. 陆基圆池循环水养殖模式的优势[J]. 当代水产, 2022, 47(1): 80-81. doi: 10.3969/j.issn.1674-9049.2022.01.024
|
[4] |
WANG X X, OLSEN L M, REITAN K I, et al. Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multi-trophic aquaculture[J]. Aquaculture Environment Interaction, 2012, 2(3): 267-283. doi: 10.3354/aei00044
|
[5] |
DAUDA A B, AJAD A, TOLA-FABUNMI A S, et al. Waste production in aquaculture: Sources, components and managements in different culture systems[J]. Aquaculture and Fisheries, 2019, 4(3): 81-88. doi: 10.1016/j.aaf.2018.10.002
|
[6] |
YANG P, ZHAO G H, TONG C, et al. Assessing nutrient budgets and environmental impacts of coastal land-based aquaculture system in southeastern China[J]. Agriculture, Ecosystems & Environment, 2021, 322: 107662.
|
[7] |
NIMPTSCH J, WOELFL S, OSORIO S, et al. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams[J]. Science of the Total Environment, 2015, 537: 129-138. doi: 10.1016/j.scitotenv.2015.07.160
|
[8] |
ABDUL L A, JING Y C, MOHD H Z M H, et al. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review[J]. Journal of Water Process Engineering, 2022, 46: 102553. doi: 10.1016/j.jwpe.2021.102553
|
[9] |
GOMES J M, SILVA J M, DUARRTE J L S, et al. Ecotoxicological evaluation of a fish farming effluent treated by Fenton oxidation and coagulation process[J]. Separation Science and Technology, 2020, 55(16): 2967-2976. doi: 10.1080/01496395.2019.1662808
|
[10] |
LOPARDO C R, ZHANG L, WILIAM J, et al. Comparison of nutrient retention efficiency between vertical-flow and floating treatment wetland mesocosms with and without biodegradable Plastic[J]. Ecological Engineering, 2019, 131: 120-130. doi: 10.1016/j.ecoleng.2019.01.024
|
[11] |
BAKHSHOODEH R, ALAVI N, OLDHAM C, et al. Constructed wetlands for landfill leachate treatment: A review[J]. Ecological Engineering, 2020, 146: 105725. doi: 10.1016/j.ecoleng.2020.105725
|
[12] |
国家环境保护总局. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境出版社, 2002.
|
[13] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
[14] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
|
[15] |
郭鹤方, 甄志磊, 赵林婷, 等. 潮汐流-潜流人工湿地对城市污染水体中氮的去除[J]. 环境化学, 2021, 40(12): 3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002
|
[16] |
张晓一. 表面流人工湿地与复合型生态浮床对低污染水体氮磷的去除特性研究[D]. 上海: 上海交通大学, 2019.
|
[17] |
GU X S, CHEN D Y, WU F, et al. Function of aquatic plants on nitrogen removal and greenhouse gas emission in enhanced denitrification constructed wetlands: Iris pseudacorus for example[J]. Journal of Cleaner Production, 2022, 330: 129842. doi: 10.1016/j.jclepro.2021.129842
|
[18] |
隗岚琳, 刘东升, 廖雪珂, 等. 垂直潜流人工湿地低温净化效果及其与微生物作用关系[J]. 环境科学学报, 2021, 41(10): 4039-4048. doi: 10.13671/j.hjkxxb.2021.0115
|
[19] |
胡沅胜, 赵亚乾, 赵晓红, 等. 实现高效自养脱氮的单级上流式多潮汐人工湿地[J]. 中国给水排水, 2015, 31(15): 127-132. doi: 10.19853/j.zgjsps.1000-4602.2015.15.032
|
[20] |
LIU W R, CHEN W J, YANG D H, et al. Functional and compositional characteristics of nitrifiers reveal the failure of achieving mainstream nitritation under limited oxygen or ammonia conditions[J]. Bioresource Technology, 2019, 275: 272-279. doi: 10.1016/j.biortech.2018.12.065
|
[21] |
刘国华, 庞毓敏, 范强, 等. 进水氨氮负荷对污水生物脱氮过程中N2O释放的影响[J]. 环境污染与防治, 2015, 37(7): 18-22.
|
[22] |
林运通, 崔理华, 范远红, 等. 5种湿地沉水植物对模拟污水厂尾水的深度处理[J]. 环境工程学报, 2016, 10(12): 6914-6922.
|
[23] |
PAVLINERI N, SKOULIKIDIS N T, TSIHRINTZIS V A, et al. Constructed floating wetlands: A review of research, design, operation and management aspects, and data meta-analysis[J]. Chemical Engineering Journal, 2017, 308: 1120-1132. doi: 10.1016/j.cej.2016.09.140
|
[24] |
李丹, 吕锡武, 巩佳佳, 等. 冷季型禾草人工湿地处理生活污水的应用[J]. 净水技术, 2020, 39(8): 72-79. doi: 10.15890/j.cnki.jsjs.2020.08.014
|
[25] |
KUNDAN S, SOHAM K, SHIVANSHI T, et al. Ecological floating bed (EFB) for decontamination of polluted water bodies: Design, mechanism and performance[J]. Journal of Environmental Management, 2019, 251: 109550. doi: 10.1016/j.jenvman.2019.109550
|
[26] |
王俊力, 付子轼, 乔红霞, 等. 枯萎期芦苇收割时间对湿地脱氮效果及根系呼吸代谢的影响[J]. 环境科学研究, 2021, 34(8): 1909-1917. doi: 10.13198/j.issn.1001-6929.2021.02.10
|
[27] |
陈永华, 吴晓芙, 何钢, 等. 人工湿地污水处理系统中的植物效应与基质酶活性[J]. 生态学报, 2009, 29(11): 6051-6057. doi: 10.3321/j.issn:1000-0933.2009.11.037
|
[28] |
ZHU L D, LI Z H, KETOLA T. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area[J]. Ecological Engineering, 2011, 37(10): 1460-1466. doi: 10.1016/j.ecoleng.2011.03.010
|
[29] |
DU L, TRINH X T, CHEN Q R, et al. Enhancement of microbial nitrogen removal pathway by vegetation in Integrated Vertical-Flow Constructed Wetlands (IVCWs) for treating reclaimed water[J]. Bioresource Technology, 2018, 249: 644-651. doi: 10.1016/j.biortech.2017.10.074
|
[30] |
赵倩, 庄林岚, 盛芹, 等. 潜流人工湿地中基质在污水净化中的作用机制与选择原理[J]. 环境工程, 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003
|
[31] |
潘傲, 张智, 孙磊, 等. 种植不同植物的表面流人工湿地净化效果和微生物群落差异分析[J]. 环境工程学报, 2019, 13(8): 1918-1929.
|
[32] |
张馨文, 冯成业, 张文智, 等. 人工湿地碳调控研究进展[J]. 湿地科学, 2022, 20(3): 413-420. doi: 10.13248/j.cnki.wetlandsci.2022.03.015
|
[33] |
张军, 周琪, 何蓉. 表面流人工湿地中氮磷的去除机理[J]. 生态环境, 2004(1): 98-101.
|
[34] |
黄翔峰, 王珅, 陈国鑫, 等. 人工湿地对水产养殖废水典型污染物的去除[J]. 环境工程学报, 2016, 10(1): 12-20.
|
[35] |
张彩莹, 王岩, 王妍艳. 潜流人工湿地对畜禽养殖废水的净化效果[J]. 农业工程学报, 2013(17): 160-168.
|
[36] |
姚燃, 刘锋, 吴露, 等. 三级绿狐尾藻表面流人工湿地对养殖废水处理效应研究[J]. 地球与环境, 2018, 46(5): 475-481.
|
[37] |
赵伟, 范增增, 杨新萍. 水平潜流人工湿地对畜禽养殖废水中特征污染物的去除[J]. 环境科学, 2021, 42(12): 5865-5875.
|
[38] |
沈莹, 郑于聪, 王晓昌, 等. 不同尺度潜流人工湿地对污染河水的净化机制[J]. 环境工程学报, 2018, 12(6): 1667-1675.
|
[39] |
崔理华, 朱夕珍, 骆世明, 等. 垂直流人工湿地系统对污水磷的净化效果[J]. 环境污染治理技术与设备, 2002, 3(7): 13-17.
|
[40] |
李飞翔, 岳琛, 张超月, 等. 人工湿地去除水产养殖尾水中氮磷的影响因素识别[J]. 生态与农村环境学报, 2022, 38(7): 925-932.
|
[41] |
周新伟, 沈明星, 金梅娟, 等. 多级串联表面流人工湿地对河蟹养殖尾水的净化效果研究[J]. 湿地科学, 2017, 15(6): 774-780.
|
[42] |
YOUNGGY K, BRUCE E L. Simultaneous removal of organic matterand salt ions from saline wastewater in bioelectrochemical systems[J]. Desalination, 2013, 308(21): 115-121.
|
[43] |
MA Q, QU Y Y, ZHANG X W, et al. Identification of the microbial community composition and structure of coal-mine wastewater treatmentplants[J]. Microbiological Research, 2015, 175: 1-5. doi: 10.1016/j.micres.2014.12.013
|
[44] |
MENG P P, PEI H Y, HU W R, et al. How to increasemicrobial degradation in constructed wetlands: influencing factorsand improvement measures[J]. Bioresource Technology, 2014, 157: 316-326. doi: 10.1016/j.biortech.2014.01.095
|
[45] |
CHI Z F, HOU L N, LI H. Effects of pollution load and salinity shock on nitrogen removal and bacterial community in two-stage vertical flow constructed wetlands[J]. Bioresource Technology, 2021, 342: 126031. doi: 10.1016/j.biortech.2021.126031
|
[46] |
韩亚琳, 王福浩, 王 群, 等. HSBBR运行模式对同步短程硝化反硝化脱氮及微生物群落特征的影响[J]. 环境工程, 2021, 9(1): 51-57.
|
[47] |
刘琴, 信欣, 周希, 等. 磁性纳米 Fe3O4@C 对 SBR 脱氮除磷性能及其微生物种群组成的影响[J]. 环境科学学报, 2021, 41(7): 2664-2672.
|
[48] |
余俊霞, 陈双荣, 刘凌言, 等. 复合人工湿地系统对低污染水总氮的净化效果及其微生物群落结构特征[J]. 环境工程, 2022, 40(1): 13-20.
|
[49] |
FANG Y K, WANG H C, HAN J L, et al. Enhanced nitrogen removal of constructed wetlands by coupling with the bioelectrochemical system under low temperature: Performance and mechanism[J]. Journal of Cleaner Production, 2022, 350: 131365. doi: 10.1016/j.jclepro.2022.131365
|
[50] |
WANG T, NI Z L, KUANG B, et al. Two-stage hybrid microalgal electroactive wetland-coupled anaerobic digestion for swine wastewater treatment in South China: Full-scale verification[J]. Science of the Total Environment, 2022, 820: 153312. doi: 10.1016/j.scitotenv.2022.153312
|
[51] |
LOUCA S, PARFREY LW, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272-1277. doi: 10.1126/science.aaf4507
|
[52] |
王飞鹏, 黄亚玲, 张瑞瑞, 等. 不同曝气方式对人工湿地细菌多样性、代谢活性及功能的影响[J]. 环境科学, 2022, 43(4): 2007-2016.
|