[1] NGUYEN T D, ITAYAMA T, RAMARAI R, et al. Chronic ecotoxicology and statistical investigation of ciprofloxacin and ofloxacin to Daphnia magna under extendedly long-term exposure[J]. Environmental Pollution, 2021, 291: 118095. doi: 10.1016/j.envpol.2021.118095
[2] LIU Y, YUAN Y, WANG Z, et al. Removal of ofloxacin from water by natural ilmenite-biochar composite: A study on the synergistic adsorption mechanism of multiple effects[J]. Bioresource Technology, 2022, 363: 127938. doi: 10.1016/j.biortech.2022.127938
[3] RASOULZADEH H, AZARPIRA H, ALINEJAD N, et al. Efficient degradation of Ocufloxin a neutral photo oxidation/reduction system based on the enhanced heterogeneous-homogeneous sulfite-iodide cycle[J]. Optik, 2022, 257: 168878. doi: 10.1016/j.ijleo.2022.168878
[4] MATHUR P, SANYAL D, CALLAHAN D L, et al. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ- ment and human health[J]. Environmental Pollution, 2021, 291: 118233. doi: 10.1016/j.envpol.2021.118233
[5] LU M, XU Z, ZHAO H, et al. Heterogeneous electro-Fenton catalysis with novel bimetallic CoFeC electrode[J]. Separation and Purification Technology, 2022, 302: 122069. doi: 10.1016/j.seppur.2022.122069
[6] WEN Z, REN S, ZHANG Y, et al. Performance of anode materials in electro-Fenton oxidation of cefoperazone in chloride medium: New insight into simultaneous mineralization and toxic byproducts formation[J]. Journal of Cleaner Production, 2022, 377: 134225. doi: 10.1016/j.jclepro.2022.134225
[7] 龚月湘, 兰华春, 李久义, 等. 光电芬顿矿化草甘膦有机废水[J]. 环境工程学报, 2016, 10(8): 3999-4003. doi: 10.12030/j.cjee.201503080
[8] JIA X, BAI X, JI Z, et al. Insight into the Effective Removal of Ciprofloxacin Using a Two-Dimensional Layered NiO/g-C3N4 Composite in Fe-Free Photo-Electro-Fenton System[J]. Acta Physico Chimica Sinica, 2021, 37(8): 2010042.
[9] SCHMACHTENBERG N, SILVESTRI S, SILVERIRA S J, et al. Preparation of delafossite–type CuFeO2 powders by conventional and microwave-assisted hydrothermal routes for use as photo–Fenton catalysts[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 102954. doi: 10.1016/j.jece.2019.102954
[10] YOUNSI M, AIDER A, BOUGUELIA A, et al. Visible light-induced hydrogen over CuFeO2 via S2O32− oxidation[J]. Solar Energy, 2005, 78(5): 574-580. doi: 10.1016/j.solener.2004.01.012
[11] XU Q, LI R, WANG C, et al. Visible-light photocatalytic reduction of Cr(Ⅵ) using nano-sized delafossite (CuFeO2) synthesized by hydrothermal method[J]. Journal of Alloys and Compounds, 2017, 723: 441-447. doi: 10.1016/j.jallcom.2017.06.243
[12] DARKHOSH F, LASHANIZAGEGAN M, MAHJOUB A R, et al. One pot synthesis of CuFeO2@expanding perlite as a novel efficient floating catalyst for rapid degradation of methylene blue under visible light illumination[J]. Solid State Sciences, 2019, 91: 61-72. doi: 10.1016/j.solidstatesciences.2019.03.009
[13] XIN S, MA B, LIU G, et al. Enhanced heterogeneous photo-Fenton-like degradation of tetracycline over CuFeO2/biochar catalyst through accelerating electron transfer under visible light[J]. Journal of Environmental Management, 2021, 285: 112093. doi: 10.1016/j.jenvman.2021.112093
[14] DENG Q, CHEN H, WANG G, et al. Structural, optical and photoelectrochemical properties of p type Ni doped CuFeO2 by hydrothermal method[J]. Ceramics International, 2020, 46(1): 598-603. doi: 10.1016/j.ceramint.2019.09.008
[15] TU L W, CHANG K S. Hydrothermal fabrication and photocatalytic study of delafossite (CuFeO2) thin films on fluorine-doped tin oxide substrates[J]. Materials Chemistry and Physics, 2021, 267: 124620. doi: 10.1016/j.matchemphys.2021.124620
[16] WANG R, AN H, ZHANG H, et al. High active radicals induced from peroxymonosulfate by mixed crystal types of CuFeO2 as catalysts in the water[J]. Applied Surface Science, 2019, 484: 1118-1127. doi: 10.1016/j.apsusc.2019.04.182
[17] DAI C, NIE Y, TIAN X, et al. Insight into enhanced Fenton-like degradation of antibiotics over CuFeO2 based nanocomposite: To improve the utilization efficiency of ·OH/O2·- via minimizing its migration distance[J]. Chemosphere, 2022, 294: 133743. doi: 10.1016/j.chemosphere.2022.133743
[18] ZHANG B, ZHANG M, ZHANG L, et al. PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants[J]. Applied Surface Science, 2020, 530: 147233. doi: 10.1016/j.apsusc.2020.147233
[19] HU X, ZHANG Y, WANG B, et al. Novel g-C3N4/BiOClxI1-x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light[J]. Applied Catalysis B:Environmental, 2019, 256: 117789. doi: 10.1016/j.apcatb.2019.117789
[20] SENASU T, CHANKHANITTHA T, HEMAVIBOOL K, et al. Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics[J]. Catalysis Today, 2022, 384-386: 209-227. doi: 10.1016/j.cattod.2021.04.008
[21] WANG M, LIU C, SHI H, et al. Facile synthesis of chitosan-derived maillard reaction productions coated CuFeO2 with abundant oxygen vacancies for higher Fenton-like catalytic performance[J]. Chemosphere, 2021, 283: 131191. doi: 10.1016/j.chemosphere.2021.131191
[22] ZHUANG G, CHEN Y, ZHUANG Z, et al. Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design[J]. Science China Materials, 2020, 63(11): 2089-2118. doi: 10.1007/s40843-020-1305-6
[23] BAIANO C, SCHIAVO E, GERBALDI C, et al. Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide[J]. Molecular Catalysis, 2020, 496: 111181. doi: 10.1016/j.mcat.2020.111181
[24] NARKBUAKAEW T, SATTAYAPORN S, SAITO N, et al. Investigation of the Ag species and synergy of Ag-TiO2 and g-C3N4 for the enhancement of photocatalytic activity under UV–Visible light irradiation[J]. Applied Surface Science, 2022, 573: 151617. doi: 10.1016/j.apsusc.2021.151617
[25] MOLOTO W, MAFA P J, MBULE P, et al. Photoinduced electrochemical effect of porous BiPOM on TiO2 photoanode performance for dye-sensitized solar cells application[J]. Materials Today Communications, 2022, 30: 103001. doi: 10.1016/j.mtcomm.2021.103001
[26] LIU Y, ZHANG J, SHENG C, et al. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chemical Engineering Journal, 2010, 162(3): 1006-1011. doi: 10.1016/j.cej.2010.07.009
[27] XIN S, HUO S, XIN Y, et al. Heterogeneous photo-electro-Fenton degradation of tetracycline through nitrogen/oxygen self-doped porous biochar supported CuFeO2 multifunctional cathode catalyst under visible light[J]. Applied Catalysis B:Environmental, 2022, 312: 121442. doi: 10.1016/j.apcatb.2022.121442
[28] LIU Y, HE X, FU Y, et al. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes[J]. Chemical Engineering Journal, 2016, 284: 1317-1327. doi: 10.1016/j.cej.2015.09.034
[29] XU P, WANG P, LI X, et al. Efficient peroxymonosulfate activation by CuO-Fe2O3/MXene composite for atrazine degradation: Performance, coexisting matter influence and mechanism[J]. Chemical Engineering Journal, 2022, 440: 135863. doi: 10.1016/j.cej.2022.135863
[30] HU L, ZHANG G, LIU M, et al. Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: Effects of pH, inorganic anions, and water matrix[J]. Chemical Engineering Journal, 2018, 338: 300-310. doi: 10.1016/j.cej.2018.01.016
[31] HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
[32] LAI L, JI H, ZHANG H, et al. Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: Surface ≡V(III) and ≡V(IV) as electron donors promoted the regeneration of ≡Fe(II)[J]. Applied Catalysis B:Environmental, 2021, 282: 119559. doi: 10.1016/j.apcatb.2020.119559