[1] MOAL M L, GASCUEL-ODOUX C, MéNESGUEN A, et al. Eutrophication: A new wine in an old bottle?[J]. Science of the Total Environment, 2019, 651(Pt 1): 1-11.
[2] LE C, ZHA Y, LI Y, et al. Eutrophication of lake waters in China: Cost, causes, and control[J]. Environmental Management, 2010, 45(4): 662-668. doi: 10.1007/s00267-010-9440-3
[3] 丁雄祺, 谢媚, 陈偿, 等. 一株高效氨氮及亚硝态氮去除功能菌株的分离鉴定及在生物絮团对虾养殖中的应用[J]. 中国水产科学, 2019, 26(5): 959-970.
[4] 孔繁翔, 高光. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J]. 生态学报, 2005, 25(3): 589-595. doi: 10.3321/j.issn:1000-0933.2005.03.028
[5] NILOUFAR G, R. P K. Critical review of effluent dissolved organic nitrogen removal by soil/aquifer-based treatment systems[J]. Chemosphere, 2021, 269: 1-11.
[6] WANG H, WANG T, YANG S, et al. Nitrogen removal in oligotrophic reservoir water by a mixed aerobic denitrifying consortium: Influencing factors and immobilization effects[J]. International Journal of Environmental Research and Public Health, 2019, 16(4): 583. doi: 10.3390/ijerph16040583
[7] 张文艺, 张采芹, 占明飞, 等. 滤食性底栖动物-菌藻复合生态系统对富营养水体净化的特性[J]. 湖北农业科学, 2013, 52(20): 4926-4931.
[8] 朱小龙, 谷娇, 靳辉, 等. 太湖河蚬(Corbicula fluminea)对富营养水体水质的改善作用?[J]. 湖泊科学, 2015, 27(3): 486-492. doi: 10.18307/2015.0316
[9] 江君, 李欣, 徐飞, 等. 3个荷花品种对富营养水体和底泥中氮、磷去除能力比较研究[J]. 江苏农业科学, 2018, 46(8): 296-299.
[10] 徐恒戬, 权召, 周永顺. 富营养水体修复植物种质筛选的研究[J]. 种子, 2018, 37(5): 67-69.
[11] 张萌, 李雄清, 邹新, 等. 典型沉水植物修复富营养水体的最优种植密度[J]. 湖北农业科学, 2016, 55(20): 5218-5224.
[12] 梁玉婷, 杨星宇, 杨兰芳, 等. 湿地植物生长对去除富营养化水体总氮和硝氮的影响[J]. 湖北大学学报(自然科学版), 2021, 43(6): 644-652.
[13] LIN S S, SHEN S L, ZHOU A, et al. Assessment andmanagement of lake eutrophication: A case study in Lake Erhai, China[J]. Science of the Total Environment, 2021, 751: 2021, 751: 141618
[14] XINGHUI X, SIBO Z, SILING L, et al. The cycle of nitrogen in river systems: sources, transformation, and flux[J]. Environmental science Processes & impacts, 2018, 20(6): 863-891.
[15] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9
[16] GAO F, YANG H-L, LI C, et al. Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp[J]. Bioresource Technology, 2019, 282: 118-124. doi: 10.1016/j.biortech.2019.03.011
[17] SAEED T, GUANGZHI S. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112: 429-448. doi: 10.1016/j.jenvman.2012.08.011
[18] 廖晓数, 贺锋, 徐栋, 等. 低C/N对湿地中硝化反硝化作用的影响[J]. 中国环境科学, 2008, 28(7): 603-607. doi: 10.3321/j.issn:1000-6923.2008.07.006
[19] 吴代顺, 杨昕怡, 于雪, 等. 碳氮比对硝化过程微生物代谢及功能基因的影响[J]. 中国给水排水, 2021, 37(7): 20-26.
[20] BONASSA G, BOLSAN A C, HOLLAS C E, et al. Organic carbon bioavailability: Is it a good driver to choose the best biological nitrogen removal process?[J]. Science of the Total Environment, 2021, 786: 147390. doi: 10.1016/j.scitotenv.2021.147390
[21] CHIU Y C, CHUNG M S. Determination of optimal COD/nitrate ratio for biological denitrification[J]. International Biodeterioration & Biodegradation, 2003, 51(1): 43-49.
[22] CAO S B, DU R, PENG Y Z, et al. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage[J]. Chemical Engineering Journal, 2019, 362: 107-115. doi: 10.1016/j.cej.2018.12.160
[23] FU X R, HOU R R, YANG P, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. doi: 10.1016/j.scitotenv.2022.153061
[24] 王建华, 陈永志, 彭永臻. 低碳氮比实际生活污水A2O-BAF工艺低温脱氮除磷[J]. 中国环境科学, 2010, 30(9): 1195-1200.
[25] 胡曼利. 外加植物碳源和稀碱加热预处理强化潜流人工湿地对低C/N污水的处理效果[D]. 重庆: 西南大学, 2022.
[26] 彭永臻, 王鸣岐, 彭轶, 等. 四种碳源条件下城市污水处理厂尾水深度脱氮的性能与微生物种群结构[J]. 北京工业大学学报, 2021, 47(10): 1158-1166.
[27] CHIU Y C, LEE L L, CHANG C N, et al. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor[J]. International Biodeterioration & Biodegradation, 2007, 59(1): 1-7.
[28] 凌宇, 闫国凯, 王海燕, 等. 6种农业废弃物初期碳源及溶解性有机物释放机制[J]. 环境科学, 2021, 42(5): 2422-2431.
[29] 任玉锐, 郭照冰. 植物作为反硝化碳源[J]. 环境工程学报, 2015, 9(5): 2247-2252. doi: 10.12030/j.cjee.20150536
[30] 余晖, 张学青, 张曦, 等. 黄河水体颗粒物对硝化过程的影响研究[J]. 环境科学学报, 2004, 24(4): 601-606. doi: 10.3321/j.issn:0253-2468.2004.04.007
[31] 张学青, 夏星辉, 杨志峰. 水体颗粒物对有机氮转化的影响[J]. 环境科学, 2007, 28(9): 1954-1959. doi: 10.3321/j.issn:0250-3301.2007.09.010
[32] LYNN T J, YEH D H, ERGAS S J. Performance of denitrifying stormwater biofilters under intermittent conditions[J]. Environmental Engineering Science, 2015, 32(9): 796-805. doi: 10.1089/ees.2015.0135
[33] BOLEY A, MULLER W R, HAIDER G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems[J]. Aquacultural Engineering:An International Journal, 2000(1/2): 22.
[34] 陈志华, 周键, 王三反. 固相反硝化在水污染治理中的研究进展[J]. 化工进展, 2021, 40(z1): 366-374.
[35] 雷柯柯, 马甡, 单洪伟, 等. 人工悬浮生物絮团在凡纳滨对虾养殖系统中的初步应用[J]. 水产科技情报, 2019, 46(1): 37-43.
[36] 罗佳, 韩士群, 罗海荣, 等. 外加碳源对富营养化水体生物脱氮效果及细菌群落结构的影响[J]. 江苏农业学报, 2012, 28(6): 1312-1317.
[37] 王玥, 秦帆, 唐燕华, 等. 农业废弃物作为反硝化脱氮外加碳源的研究[J]. 林业工程学报, 2019, 4(5): 146-151.
[38] 王琦, 石雷, 杨小丽, 等. 废弃生物质强化生态袋脱氮除磷的效果[J]. 东南大学学报(自然科学版), 2021, 51(1): 138-144. doi: 10.3969/j.issn.1001-0505.2021.01.019
[39] 杨正健, 魏辰宇, 刘德富, 等. 开放水体脱氮过程及其影响因素研究进展[J]. 水利学报, 2021, 52(2): 194-202.
[40] 王新刚, 吕锡武, 张圣菊. 水生植物分解过程中生物质及氮磷释放规律研究[J]. 安全与环境学报, 2011, 11(5): 82-85. doi: 10.3969/j.issn.1009-6094.2011.05.018
[41] 邵留, 徐祖信, 金伟, 等. 农业废物反硝化固体碳源的优选[J]. 中国环境科学, 2011, 31(5): 748-754.
[42] 成都市地方志编纂委员会编纂. 成都市志 水利志[M]. 成都: 四川辞书出版社, 2001.
[43] 林浩澎, 孙慧明, 罗娉婷, 等. 一株耐碱变形假单胞菌ZY-3的鉴定及其脱氮特性[J]. 微生物学通报, 2022, 49(10): 4066-4079.
[44] 张怡, 刘本洪, 刘蕾, 等. 硬质河岸和水体富营养化河道的综合治理技术: 以柴桑河为例[J]. 环境工程学报, 2021, 15(12): 3875-3882. doi: 10.12030/j.cjee.202109012
[45] 丁润楠, 姚晓龙, 傅大放, 等. 中国东部湖泊有机氮浓度时空特征及影响因素[J]. 环境科学与技术, 2021, 44(6): 35-42.
[46] 刘海弟, 孙鲁强, 李伟曼, 等. 红砖烧成对污泥原料中重金属离子固化的研究[J]. 砖瓦, 2021(8): 21-22. doi: 10.3969/j.issn.1001-6945.2021.08.007
[47] 岳建芝, 李刚, 张全国. 促进木质纤维素类生物质酶解的预处理技术综述[J]. 江苏农业科学, 2011, 39(3): 340-343. doi: 10.3969/j.issn.1002-1302.2011.03.134
[48] 邵留, 徐祖信, 王晟, 等. 新型反硝化固体碳源释碳性能研究[J]. 环境科学, 2011, 32(8): 2323-2327.
[49] 张雯. 以农业废弃物为基料的地下水反硝化缓释碳源材料研究及应用[D]. 南京: 南京大学, 2017.
[50] 狄军贞, 李拓达, 赵微. 甘蔗渣碳源释放规律及其硫酸盐还原菌利用性试验[J]. 农业环境科学学报, 2019, 38(5): 1151-1157. doi: 10.11654/jaes.2018-0994
[51] 阳春, 郑向勇, 严立, 等. 几种土壤改良材料磷氨氮吸附和硝化作用特性的研究[J]. 农业环境科学学报, 2008(5): 2013-2017. doi: 10.3321/j.issn:1672-2043.2008.05.058
[52] SALILING W J B, WESTERMAN P W, LOSORDO T M. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations[J]. Aquacultural Engineering, 2007, 37(3): 222-233. doi: 10.1016/j.aquaeng.2007.06.003
[53] 田冬, 高明, 王侃. 不同粒径生物质灰渣填料净化生活污水的试验研究[J]. 水土保持学报, 2015, 29(4): 218-222.
[54] 赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014, 35(3): 987-994.
[55] 杨平, 刘青松, 石广辉, 等. 稻壳作为缓释碳源及载体的改性研究[J]. 生态科学, 2019, 38(2): 112-118.
[56] 李斌. 固体生物质碳源复合滤料深度反硝化性能研究[D]. 北京: 北京工业大学, 2013.
[57] PAN X, GU Z, CHEN W, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review[J]. Science of the Total Environment, 2021, 754: 142104. doi: 10.1016/j.scitotenv.2020.142104
[58] 王宁, 黄磊, 罗星, 等. 生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响[J]. 环境科学, 2018, 39(10): 4505-4511.
[59] 刘杰, 韩士群, 齐建华, 等. 生物碳含量对底泥活化原位脱氮及微生物活性的影响[J]. 江苏农业学报, 2016, 32(1): 106-110. doi: 10.3969/j.issn.1000-4440.2016.01.016
[60] 杨磊, 郭军, 王岩, 等. 农林废弃物制备环境友好型缓释碳源生物膜载体材料[J]. 湖北农业科学, 2021, 60(18): 68-71.
[61] 陈佳伟, 许晓毅, 时和敏, 等. 基于D-最优混料设计的复合缓释碳源填料制备及其性能分析[J]. 环境污染与防治, 2021, 43(6): 718-724.
[62] FALLAHI A, REZVANI F, ASGHARNEJAD H, et al. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review[J]. Chemosphere, 2021, 272: 129878. doi: 10.1016/j.chemosphere.2021.129878
[63] 丁绍兰, 谢林花, 马蕊婷. 壳类生物质释碳性能研究[J]. 环境污染与防治, 2016, 38(10): 1-5,11.
[64] 朱辉翔, 张树楠, 彭英湘, 等. 不同固体碳源释碳特征及其对反硝化脱氮效果研究[J]. 农业现代化研究, 2021, 42(2): 206-214.
[65] MULLER W R, HEINEMANN A, SCHAFER C, et al. Aspects of PHA(poly-B-hydroxy-butyric-acid) as an H-donator for denitrification in water-treatment processes// Int water supply assoc[J]. International workshop on inorganic nitrogen compounds and water supply in 1991. Hamburg, 1992: 27-29.
[66] BOERSMA M, ABERLE N, HANTZSCHE F M, et al. Nutritional limitation travels up the food chain[J]. International Review of Hydrobiology, 2008, 93(4/5): 479-488.
[67] STUTTER M I, GRAEBER D, EVANS C D, et al. Balancing macronutrient stoichiometry to alleviate eutrophication[J]. Science of the Total Environment, 2018, 634: 439-447. doi: 10.1016/j.scitotenv.2018.03.298
[68] VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the organic and inorganic phase composition of biomass[J]. Fuel, 2012, 94(1): 1-33.
[69] GILBERT P M. Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes[J]. Marine Pollution Bulletin, 2017, 124(2): 591-606. doi: 10.1016/j.marpolbul.2017.04.027
[70] REDFIELD A C. The biological control of chemical factors in the environment[J]. Science progress, 1960, 11: 150-170.
[71] HILLEBRAND H, STEINERT G, BOERSMA M, et al. Goldman revisited: Faster-growing phytoplankton has lower N: P and lower stoichiometric flexibility[J]. Limnology and Oceanography, 2013, 58(6): 2076-2088. doi: 10.4319/lo.2013.58.6.2076
[72] 于潘, 张黎烜, 尤庆敏, 等. 综合硅藻指数的建立及其在淡水生态评价中的应用[J]. 环境科学研究, 2022, 35(9): 2165-2174. doi: 10.13198/j.issn.1001-6929.2022.06.03
[73] ISHIDA C K, ARNON S, PETERSON C G, et al. Influence of algal community structure on denitrification rates in periphyton cultivated on artificial substrata[J]. Microbial Ecology, 2008, 56(1): 140-152. doi: 10.1007/s00248-007-9332-0