[1] 付永江. 水平潜流人工湿地对Cd2+、Zn2+及营养物的处理性能研究[D]. 长沙: 长沙理工大学, 2019.
[2] 付丰连. 物理化学法处理重金属废水的研究进展[J]. 广东化工, 2010, 37(4): 115-117. doi: 10.3969/j.issn.1007-1865.2010.04.056
[3] 沈懿静. 污水重金属去除研究进展[J]. 科学技术创新, 2018, 22(12): 20-22. doi: 10.3969/j.issn.1673-1328.2018.12.010
[4] 秦玉, 李慧莉, 尹晓雪, 等. 人工湿地抗生素与重金属的去除及其环境影响[J]. 环境保护科学, 2021, 47(6): 121-126.
[5] YU G L, WANG G L, CHI T Y, et al. Enhanced removal of heavy metals and metalloids by constructed wetlands: A review of approaches and mechanisms[J]. Science of the Total Environment, 2022, 821(153516): 1-17.
[6] 葛光环, 寇坤, 喻苏慧, 等. 人工湿地香蒲中重金属分布规律研究[J]. 湖北农业科学, 2021, 60(8): 141-145.
[7] 葛光环, 陈爱侠, 寇坤, 等. 人工湿地基质和植物中重金属的分布规律研究[J]. 江西农业学报, 2020, 32(1): 115-119.
[8] 罗倩, 林凤莲, 袁锋, 等. 人工湿地植物根际微生物对4种污水重金属元素的净化能力[J]. 西南农业学报, 2022, 35(1): 176-185.
[9] 孙鹤洲, 刘骅, 田甜, 等. 人工湿地基质处理效果分析及发展趋势研究[J]. 绿色科技, 2022, 24(2): 156-158. doi: 10.3969/j.issn.1674-9944.2022.02.039
[10] YANG Y, ZHAO Y Q, LIU R B, et al. Global development of various emerged substrates utilized in constructed wetlands[J]. Bioresource Technology, 2018, 261(85): 441-452.
[11] 陈银萍, 颉海帆, 柯昀琪, 等. 不同基质人工湿地去除重金属Cd的研究[J]. 环境污染与防治, 2019, 41(9): 999-1005.
[12] 余关龙, 付永江, 彭海渊, 等. 水平潜流人工湿地对水中Cd2+、Zn2+及营养物的去除[J]. 环境工程, 2019, 37(10): 116-120.
[13] ABEDI T, MOJIRI A. Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment[J]. Environmental Technology & Innovation, 2019, 16(100472): 1-11.
[14] ZHUANG L L, LI M, LI Y, et al. The performance and mechanism of biochar-enhanced constructed wetland for wastewater treatment[J]. Journal of Water Process Engineering, 2022, 45(102522): 1-10.
[15] DENG S J, CHEN J Q, CHANG J J. Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: Performance and ecological benefits[J]. Journal of Cleaner Production, 2021, 293(126156): 1-14.
[16] 张家利, 张翠玲, 党瑞. 沸石在废水处理中的应用研究进展[J]. 环境科学与管理, 2013, 38(3): 75-79. doi: 10.3969/j.issn.1673-1212.2013.03.018
[17] SAARAFRAZ S, MOHAMMAD A T, MEGAT J, et al. Wastewater treatment using horizontal subsurface flow constructed wetland[J]. American Journal of Environmental Sciences, 2009, 5(1): 99-105. doi: 10.3844/ajessp.2009.99.105
[18] 张晓斌, 刘鹏, 李星. 不同基质人工湿地去除电镀重金属(Cr, Zn)的研究[J]. 工业安全与环保, 2016, 42(9): 83-85. doi: 10.3969/j.issn.1001-425X.2016.09.026
[19] 张翔凌. 不同基质对垂直流人工湿地处理效果及堵塞影响研究[D]. 武汉: 中国科学院大学(水生生物研究所), 2007.
[20] CHEN J Q, DENG S J, JIA W, et al. Removal of multiple heavy metals from mining-impacted water by biochar-filled constructed wetlands: Adsorption and biotic removal routes[J]. Bioresource Technology, 2021, 331(125061): 1-9.
[21] CHANG J J, PENG D L, DENG S J, et al. Efficient treatment of mercury (Ⅱ) - containing wastewater in aerated constructed wetland microcosms packed with biochar[J]. Chemosphere, 2022, 290(133302): 1-9. doi: 10.1016/j.chemosphere.2021.133302
[22] FENG L K, HE S F, ZHAO W X, et al. Can biochar addition improve the sustainability of intermittent aerated constructed wetlands for treating wastewater containing heavy metals?[J]. Chemical Engineering Journal, 2022, 444(133636): 1-11. doi: 10.1016/J.CEJ.2022.136636
[23] 国家环保总局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002.
[24] 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008.
[25] 杨波. 模拟人工湿地对废水中Zn的去除效果和机制研究[D]. 兰州: 兰州交通大学, 2018.
[26] 陈文慧. 模拟人工湿地处理含镉无机废水的研究[D]. 南宁: 广西大学, 2008.
[27] 王清华, 赵亚琦, 黄磊, 等. 间歇曝气生物炭湿地中污染物的去除特征及微生物种群结构[J]. 环境工程学报, 2021, 15(6): 2118-2125. doi: 10.12030/j.cjee.202101043
[28] 王泉, 吴献花, 吴珊, 等. 垂直潜流人工湿地中ORP、DO和pH与脱氮过程的关系[J]. 玉溪师范学院学报, 2011, 27(12): 24-27. doi: 10.3969/j.issn.1009-9506.2011.12.006
[29] 陈世杰. 赤铁矿和生物炭对潜流人工湿地污水处理效果及N2O和CH4排放的影响[D]. 重庆: 西南大学, 2020.
[30] LEE S, MANIQUIZ R M C, KIM L H. Settling basin design in a constructed wetland using TSS removal efficiency and hydraulic retention time[J]. Journal of Environmental Sciences, 2014, 26(9): 1791-1796. doi: 10.1016/j.jes.2014.07.002
[31] 吕婉琳. 生物炭对潜流人工湿地N2O排放的影响机理研究[D]. 重庆: 西南大学, 2018.
[32] 张杏锋, 冯健飞, 姚航, 等. 美洲商陆生物炭对Zn、Pb、Cd和Cu的吸附特性分析[J]. 环境工程, 2019, 37(8): 88-94.
[33] ZHU T, JENSSEN P D, MAHLUMT T, et al. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA) - potential filter media in treatment wetlands[J]. Water Science and Technology, 1997, 35(5): 103-108. doi: 10.2166/wst.1997.0175
[34] 张璐, 杨忆新, 罗明生, 等. 天然沸石去除煤化工废水中氨氮的研究[J]. 工业水处理, 2018, 38(7): 46-49. doi: 10.11894/1005-829x.2018.38(7).046
[35] YANG L, CHANG H T, HUANG M N L. Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation[J]. Ecological Engineering, 2001, 18(1): 91-105. doi: 10.1016/S0925-8574(01)00068-4
[36] 徐祖信, 谢海林, 叶建锋, 等. 模拟煤灰渣垂直潜流人工湿地的除磷性能分析[J]. 环境污染与防治, 2007, 2007(4): 241-243. doi: 10.3969/j.issn.1001-3865.2007.04.001
[37] VOHLAC, KOIV M, BAVOR H J, et al. Filter materials for phosphorus removal from wastewater in treatment wetlands: A review[J]. Ecological Engineering, 2009, 37(1): 70-89.
[38] SOCHACKI A, SURMACZ G J, FAURE O, et al. Polishing of synthetic electroplating wastewater in microcosm upflow constructed wetlands: Metals removal mechanisms[J]. Chemical Engineering Journal, 2014, 242(75): 43-52.
[39] 左思敏, 荆肇乾, 陶梦妮, 等. 天然沸石和改性沸石在废水处理中的应用研究[J]. 应用化工, 2019, 48(5): 1136-1139. doi: 10.3969/j.issn.1671-3206.2019.05.035
[40] 李辉, 左金龙, 王军霞. 天然沸石及其改性对污水中磷的吸附[J]. 哈尔滨:哈尔滨商业大学学报(自然科学版), 2015, 31(3): 311-314.
[41] 邹旭青, 郝庆菊, 赵茂森, 等. 铁矿石和生物炭添加对潜流人工湿地污水处理效果及温室气体排放的影响[J]. 环境工程学报, 2021, 15(2): 588-598. doi: 10.12030/j.cjee.202005025
[42] 赵仲婧, 郝庆菊, 张尧钰, 等. 铁碳微电解及沸石组合人工湿地的废水处理效果[J]. 环境科学, 2021, 42(6): 2875-2884. doi: 10.13227/j.hjkx.202010200
[43] 曹笑笑, 吕宪国, 张仲胜, 等. 人工湿地设计研究进展[J]. 湿地科学, 2013, 11(1): 121-128. doi: 10.3969/j.issn.1672-5948.2013.01.018
[44] 戴保琳. 利用农作物秸秆强化人工湿地对降雨径流中氮及重金属去除的研究[D]. 南京: 东南大学, 2015.
[45] 宁可佳. 重金属在新型复合型人工湿地中的去除、迁移及累积规律[D]. 重庆: 重庆大学, 2011.
[46] GAO Z M, Bancosz T J, Zhao Z, et al. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 357-365.
[47] ALLENDE K L, MCCARTHY D T, FLETSHER T D. The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis[J]. Chemical Engineering Journal, 2014, 246(35): 217-228.
[48] ZHOU Y C, GU T, YI W, et al. The release mechanism of heavy metals from lab-scale vertical flow constructed wetlands treating road runoff[J]. Environ Sci Pollut Res Int, 2019, 26(16): 16588-16595. doi: 10.1007/s11356-019-05097-y
[49] MEI H, LING Y Y, YAN D W, et al. Heavy metal adsorption with zeolites: The role of hierarchical pore architecture[J]. Chemical Engineering Journal, 2019, 359(363): 363-372.
[50] MOSELY L M, WILLSON P, HAMILTON B, et al. The capacity of biochar made from common reeds to neutralise pH and remove dissolved metals in acid drainage[J]. Environmental Science and Pollution Research International, 2015, 22(19): 15113-15122. doi: 10.1007/s11356-015-4735-9
[51] NGUYEN T T, HUANG H, NGUYEN T A H, et al. Recycling clamshell as substrate in lab-scale constructed wetlands for heavy metal removal from simulated acid mine drainage[J]. Process Safety and Environmental Protection, 2022, 165(26): 950-958.
[52] LIANG Y X, ZHU H, BANUELOS G, et al. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag[J]. Environmental Science and Pollution Research International, 2019, 26(33): 33804-33815. doi: 10.1007/s11356-018-2486-0
[53] 李冰, 舒艳, 李科林, 等. 人工湿地宽叶香蒲对重金属的累积与机理[J]. 环境工程学报, 2016, 10(4): 2099-2108. doi: 10.12030/j.cjee.20160483
[54] 李庆华. 人工湿地植物重金属分布规律及富集性研究[D]. 西安: 长安大学, 2014.