[1] PALASH S M, KALAM M A, MASJUKI H H, et al. Impacts of biodiesel combustion on NOx emissions and their reduction approaches[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 473-490. doi: 10.1016/j.rser.2013.03.003
[2] BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement[J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141. doi: 10.1016/j.coche.2016.09.004
[3] OGIDIAMA O V, SHAMIM T. Performance analysis of industrial selective catalytic reduction (SCR) systems[J]. Energy Procedia, 2014, 61: 2154-2157. doi: 10.1016/j.egypro.2014.12.098
[4] ZHANG W B, CHEN J L. Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts[J]. Fuel Chemistry and Technology, 2021, 49(9): 1294-1315. doi: 10.1016/S1872-5813(21)60080-4
[5] SVACHULA J, FERLAZZO N, FORZATTI P, et al. Selective reduction of nitrogen oxides (NOx) by ammonia over honeycomb selective catalytic reduction catalysts[J]. Industrial & Engineering Chemistry Research, 1993, 32(6): 1053-1060.
[6] YANG J, MA H T, YAMAMOTO Y, et al. SCR catalyst coated on low-cost monolith support for flue gas denitrification of industrial furnaces[J]. Chemical Engineering Journal, 2013, 230: 513-521. doi: 10.1016/j.cej.2013.06.114
[7] TRONCONI E, LIETTI L, FORZATTI P, et al. Experimental and theoretical investigation of the dynamics of the SCR-DeNOx reaction[J]. Chemical Engineering Science, 1996, 21(11): 2965-2970.
[8] DHANUSHKODI S R, MAHINPEYN, WILSON M, et al. Kinetic and 2D reactor modeling for simulation of the catalytic reduction of NOx in the monolith honeycomb reactor[J]. Process Safety and Environmental Protection, 2008, 86(4): 303-309. doi: 10.1016/j.psep.2008.02.004
[9] RODUIT B, BAIKER A, BETTONI F, et al. 3-D modeling of SCR of NOx by NH3 on vanadia honeycomb catalysts[J]. AIChE J, 1998, 44(12): 2371.
[10] LEI Z, LIU X, JIA M. Modeling of selective catalytic reduction (SCR) for NO removal using monolithic honeycomb catalyst[J]. Energy & Fuels, 2009, 23(6): 6146-6151.
[11] YAO J, ZHONG Z, ZHU L. Porous medium model in computational fluid dynamics simulation of a honeycombed SCR DeNOx Catalyst[J]. Chemical Engineering & Technology, 2015, 38(2): 283-290.
[12] 赵大周, 何胜, 司风琪, 等. 选择性催化还原单孔催化剂数值模拟[J]. 热力发电, 2016, 45(4): 100-105. doi: 10.3969/j.issn.1002-3364.2016.04.017
[13] 王盛, 游永华, 邵坤, 等. 扩缩通道强化蜂窝型SCR反应器脱硝性能的数值研究[J]. 环境科学学报, 2022, 42(3): 393-399.
[14] GUO K H, SHI W H, WU D H, et al. Experiment research and simulation analysis of regenerative oxygen-enriched combustion technology[J]. Industrial Heating, 2015, 66: 221-224.
[15] 王维刚. 蓄热式换热器的优化设计[J]. 化工机械, 2010, 37(4): 412-414. doi: 10.3969/j.issn.0254-6094.2010.04.004
[16] RAFIDI N, BLASIAK W. Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners[J]. Applied Thermal Engineering, 2005, 25(17/18): 2966-2982.
[17] 封红燕, 冯毅. 新型蜂窝蓄热体热工特性的数值模拟[J]. 机械设计与制造, 2012, 6: 108-110. doi: 10.3969/j.issn.1001-3997.2012.04.040
[18] YOU Y H, HUANG H, SHAO G W, et al. A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerators[J]. Applied Thermal Engineering, 2016, 108: 1243-1250. doi: 10.1016/j.applthermaleng.2016.08.035
[19] YOU Y H, Wu Z D, LI B, et al. 3D numerical simulation and optimization of honeycomb regenerators with parallel or crosswise arrangement of circular holes[J]. Chemical Engineering and Processing-Process Intensification, 2019, 137: 22-32. doi: 10.1016/j.cep.2019.01.010
[20] 吴仲达, 游永华, 王盛, 等. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. doi: 10.12034/j.issn.1009-606X.220009
[21] YOU Y H, WU Z D, ZENG W D, et al. CFD modeling of unsteady SCR deNOx coupled with regenerative heat transfer in honeycomb regenerators partly coated by Vanadium catalysts[J]. Chemical Engineering Research and Design, 2019, 150: 234-245. doi: 10.1016/j.cherd.2019.07.015
[22] 任兆勇. 基于新型纳米多孔载体的多金属氧酸盐主客体复合体系的构建及NH3-SCR中低温脱硝性能研究[D]青岛 : 山东大学 , 2019 .
[23] 祁海鹰, 李伟, 李宇红, 等. 蜂巢蓄热体的稳态传热特性和最佳换向时间[C]. 全国工业炉暨电热学术会议. 2000, 大连: 366-372.
[24] STEPHEN R T. An Introduction to Combustion Concepts and Applications[M]. Beijing: Tsinghua University Press, 2018,
[25] VANNICE M A. Kinetics of Catalytic Reactions[M]. 2005, New York: Springer Science & Business Media.
[26] 王志鹏, 李鹏飞, 陈媛, 等. SCR脱硝反应活化能和指前因子分析[J]. 环境工程, 2018, 36(10): 86-91. doi: 10.13205/j.hjgc.201810017