[1] |
陈彦秀, 李刚. 市政污泥脱水技术研究进展[J]. 环境科学与技术, 2021, 44(S1): 308-311. doi: 10.19672/j.cnki.1003-6504.2021.S1.049
|
[2] |
LI Y F, PAN L Y, ZHU Y Q, et al. How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?[J]. Water Research, 2019, 163: 114912. doi: 10.1016/j.watres.2019.114912
|
[3] |
张彦平, 裴佳华, 郑松超, 等. 污泥炭负载Fe2+活化过硫酸盐联合PAM调理污泥[J]. 环境科学与技术, 2021, 44(12): 113-119.
|
[4] |
LIU C G, WU B, CHEN X E. Sulfate radical-based oxidation for sludge treatment: a review[J]. Chemical Engineering Journal, 2018, 335: 865-875. doi: 10.1016/j.cej.2017.10.162
|
[5] |
GE D D, DONG Y T, ZHANG W R, et al. A novel Fe2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight[J]. Science of the Total Environment, 2020, 733: 139146. doi: 10.1016/j.scitotenv.2020.139146
|
[6] |
ZHEN G Y, LU X Q, ZHAO Y C, et al. Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation[J]. Bioresource Technology, 2012, 116: 259-265. doi: 10.1016/j.biortech.2012.01.170
|
[7] |
ZHEN G Y, LU X Q, LI Y Y, et al. Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation[J]. Bioresource Technology, 2012, 119: 7-14. doi: 10.1016/j.biortech.2012.05.115
|
[8] |
XIONG Q, ZHOU M, YANG H, et al. Improving the dewaterability of sewage sludge using rice husk and Fe2+-sodium persulfate oxidation[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(1): 872-881.
|
[9] |
FENG Y, ZHONG J, ZHANG L Y, et al. Activation of peroxymo nosulfate by Fe0@Fe3O4 core-shell nanowires for sulfate radical generation: electron transfer and transformation products[J]. Separation and Purification Technology, 2020, 247: 116942. doi: 10.1016/j.seppur.2020.116942
|
[10] |
简铃, 严丽丽, 鞠梦灿, 等. 铁/炭复合材料的制备及其类Fenton反应的研究进展[J]. 应用化工, 2023,52(2): 625-632.
|
[11] |
丁敬林. 负载纳米零价铁的生物炭活化过硫酸盐去除雌二醇的研究[D]. 长沙: 湖南大学, 2021.
|
[12] |
WANG Y, TIAN Q B, YANG G Y, et al. Enhanced chlortetracycline removal by iron oxide modified spent coffee grounds biochar and persulfate system[J]. Chemosphere, 2022, 301: 134654. doi: 10.1016/j.chemosphere.2022.134654
|
[13] |
李玉双, 杨嘉鑫, 魏建兵, 等. 城市污泥资源化利用技术研究进展[J]. 工业水处理, 2022, 42(12): 41-46.
|
[14] |
郝晓地,李佳勇,郝丽婷,等.剩余污泥制取生物炭可行性分析与评价[J/OL].中国给水排水(2023-03-02). http://kns.cnki.net/kcms/detail/12.1073.tu.20230109.1728.001.html.
|
[15] |
WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge: a review[J]. Water Research, 2018, 143: 608-631. doi: 10.1016/j.watres.2018.07.029
|
[16] |
张彦平, 裴佳华, 高珊珊, 等. 生物质材料用于污泥深度脱水的研究进展[J]. 工业水处理, 2022, 42(7): 24-32.
|
[17] |
HU L L, LIAO Y, HE C, et al. Enhanced dewaterability of sewage sludge with zero-valent iron-activated persulfate oxidation system[J]. Water Science & Technology, 2015, 72(2): 245-251.
|
[18] |
王澜. 基于Fe2+/HSO5-体系的污泥氧化调理工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
[19] |
曾婧, 荀久玉. 过硫酸钠与PAM联合改善污泥脱水效果的研究[J]. 江西化工, 2020, 150(4): 45-49. doi: 10.3969/j.issn.1008-3103.2020.04.015
|
[20] |
WU H L, CHE X D, DING Z H, et al. Release of soluble elements from biochars derived from various biomass feedstocks[J]. Environmental Science and Pollution Research International, 2016, 23(2): 1905-1915. doi: 10.1007/s11356-015-5451-1
|
[21] |
LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water[J]. Environmental Science and Pollution Research International, 2018, 25(31): 31136-31148. doi: 10.1007/s11356-018-3064-1
|
[22] |
喻江维. 臭氧与零价铁/铁基生物炭协同调理市政污泥促进污泥深度脱水的研究[D]. 武汉: 华中科技大学, 2018.
|
[23] |
邹意义, 袁怡, 沈涛, 等. FeCl3改性污泥生物炭对水中吡虫啉的吸附性能研究[J]. 环境科学学报, 2021, 41(9): 3478-3486.
|
[24] |
ALIREZA N E, AREZOO S. Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline[J]. Chemosphere, 2014, 107: 136-144. doi: 10.1016/j.chemosphere.2014.02.015
|
[25] |
张倩, 谢陈飞洋, 仇玥, 等. Fe/污泥基生物炭持久活化过硫酸盐降解酸性橙G[J]. 中国环境科学, 2019, 39(9): 3879-3886. doi: 10.3969/j.issn.1000-6923.2019.09.034
|
[26] |
胡益, 李培生, 余亮英. 污泥与煤混烧中含碳官能团的演化过程[J]. 武汉大学学报(工学版), 2013, 46(5): 649-653.
|
[27] |
胡艳军, 王琳洁, 卢艳军, 等. 污泥含碳有机官能团分布及其模型化合物构建[J]. 中国环境科学, 2019, 39(9): 3872-3878. doi: 10.3969/j.issn.1000-6923.2019.09.033
|
[28] |
WU W, ZHU S S, HUANG X C, et al. Mechanisms of persulfate activation on biochar derived from two different sludges: Dominance of their intrinsic compositions[J]. Journal of Hazardous Materials, 2021, 408: 124454. doi: 10.1016/j.jhazmat.2020.124454
|
[29] |
OU Y D, YAN J, QIAN L, et al. Degradation of 1, 4-dioxane by biochar supported nano magnetite particles activating persulfate[J]. Chemosphere, 2017, 184: 609-617. doi: 10.1016/j.chemosphere.2017.05.156
|
[30] |
方帅. 地下水厂铁泥制备磁性吸附剂的研究[D]. 长春: 东北师范大学, 2015.
|
[31] |
高少敏. 磁性氧化铈材料的制备及其在染料废水处理中的应用[D]. 上海: 上海应用技术大学, 2019.
|
[32] |
XU Z H, ZHOU Y W, SUN Z H, et al. Understanding reactions and pore-forming mechanisms between waste cotton woven and FeCl3 during the synthesis of magnetic activated carbon[J]. Chemosphere, 2020, 241: 125120. doi: 10.1016/j.chemosphere.2019.125120
|
[33] |
LIU X Y, YANG L, ZHAO H T, et al. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils[J]. Science of the Total Environment, 2020, 708(C): 134479.
|
[34] |
郑松超. 污泥炭负载Fe(Ⅱ)活化过硫酸盐对污泥脱水及重金属去除的研究[D]. 天津: 河北工业大学, 2021.
|
[35] |
万甜, 闫幸幸, 任杰辉, 等. Fe(Ⅱ)活化过硫酸盐改善污泥脱水性能[J]. 环境工程学报, 2020, 14(1): 189-196. doi: 10.12030/j.cjee.201902067
|
[36] |
彭小明, 吴健群, 戴红玲, 等. Ni-N-C单原子催化剂活化过硫酸盐降解苯酚[J]. 高等学校化学学报, 2021, 42(8): 2581-2591. doi: 10.7503/cjcu20210009
|
[37] |
WANG D, SUN Y, TANG D C, et al. Synergistic utilization of inherent halides and alcohols in hydraulic fracturing wastewater for radical-based treatment: a case study of di-(2-ethylhexyl) phthalate removal[J]. Journal of Hazardous Materials, 2020, 384: 121321. doi: 10.1016/j.jhazmat.2019.121321
|
[38] |
肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3306. doi: 10.16085/j.issn.1000-6613.2019-1833
|
[39] |
梁宇坤. 生物炭负载纳米零价铁镍激活过硫酸盐降解诺氟沙星废水[D]. 太原: 太原理工大学, 2019.
|
[40] |
LI J X, ZHANG X Y, LIU M C, et al. Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions[J]. Environmental Science & Technology, 2018, 52(5): 2988-2997.
|
[41] |
HAN Q, WANG Z H, XIA J F, et al. Facile and tunable fabrication of Fe3O4 /graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples[J]. Talanta, 2012, 101: 388-395. doi: 10.1016/j.talanta.2012.09.046
|
[42] |
曹华莉. 基于过硫酸盐的铁基复合材料制备及去除活性黑5的效能研究[D]. 南昌: 南昌大学, 2020.
|