[1] |
GIESE B, KLAESSIG F, PARK B, et al. Risks, release and concentrations of engineered nanomaterial in the environment [J]. Scientific Reports, 2018, 8: 1565. doi: 10.1038/s41598-018-19275-4
|
[2] |
杨亚宁. 环境中离子强度对纳米银物化特性及其毒理学效应的影响[D]. 合肥: 中国科学技术大学, 2019.
YANG Y N. Effects of ionic strength on physicochemical and toxicological properties of silver nanoparticles in the environment[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
|
[3] |
NOWACK B. Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context [J]. NanoImpact, 2017, 8: 38-47. doi: 10.1016/j.impact.2017.06.005
|
[4] |
DOOLETTE C L, MCLAUGHLIN M J, KIRBY J K, et al. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake [J]. Journal of Hazardous Materials, 2015, 300: 788-795. doi: 10.1016/j.jhazmat.2015.08.012
|
[5] |
SUN T Y, GOTTSCHALK F, HUNGERBÜHLER K, et al. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials [J]. Environmental Pollution, 2014, 185: 69-76. doi: 10.1016/j.envpol.2013.10.004
|
[6] |
DEYCARD V N, SCHÄFER J, PETIT J C J, et al. Inputs, dynamics and potential impacts of silver (Ag) from urban wastewater to a highly turbid estuary (SW France) [J]. Chemosphere, 2017, 167: 501-511. doi: 10.1016/j.chemosphere.2016.09.154
|
[7] |
COURTOIS P, RORAT A, LEMIERE S, et al. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals [J]. Environmental Pollution, 2019, 253: 578-598. doi: 10.1016/j.envpol.2019.07.053
|
[8] |
TORTELLA G R, RUBILAR O, DURÁN N, et al. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment [J]. Journal of Hazardous Materials, 2020, 390: 121974. doi: 10.1016/j.jhazmat.2019.121974
|
[9] |
DU J, TANG J H, XU S D, et al. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms [J]. Regulatory Toxicology and Pharmacology, 2018, 98: 231-239. doi: 10.1016/j.yrtph.2018.08.003
|
[10] |
BRAMI C, GLOVER A R, BUTT K R, et al. Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica [J]. Ecotoxicology and Environmental Safety, 2017, 141: 64-69. doi: 10.1016/j.ecoenv.2017.03.015
|
[11] |
李文华. 纳米银致秀丽线虫神经毒性效应研究[D]. 南京: 东南大学, 2020.
LI W H. Study on neurotoxic effects of silver nanoparticles in Caenorhabditis elegans[D]. Nanjing: Southeast University, 2020(in Chinese).
|
[12] |
SMÉKALOVÁ M, PANÁČEK A, JANČULA D, et al. Culture medium mediated aggregation and re-crystallization of silver nanoparticles reduce their toxicity [J]. Applied Materials Today, 2018, 12: 198-206. doi: 10.1016/j.apmt.2018.05.004
|
[13] |
AUCLAIR J, PEYROT C, WILKINSON K J, et al. The geometry of the toxicity of silver nanoparticles to freshwater mussels [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2021, 239: 108841.
|
[14] |
王晓科, 石清清, 邓代莉, 等. 基于土壤模式生物的纳米材料毒理研究进展 [J]. 生态毒理学报, 2018, 13(3): 31-41.
WANG X K, SHI Q Q, DENG D L, et al. Review on toxicology of nanomaterials based on soil model organisms [J]. Asian Journal of Ecotoxicology, 2018, 13(3): 31-41(in Chinese).
|
[15] |
彭宇旭. 枸杞多糖减少纳米银引起秀丽隐杆线虫损伤的实验研究[D]. 武汉: 华中师范大学, 2020.
PENG Y X. Lycium barbarum polysaccharides reduce the damage of nanosilver to c. elegans[D]. Wuhan: Central China Normal University, 2020(in Chinese).
|
[16] |
SAKKA Y, SKJOLDING L M, MACKEVICA A, et al. Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna [J]. Aquatic Toxicology, 2016, 177: 526-535. doi: 10.1016/j.aquatox.2016.06.025
|
[17] |
卿婷. 白玉蜗牛对土壤和食物相纳米银的生物富集与毒性响应规律[D]. 湘潭: 湘潭大学, 2021.
QING T. The bioaccumulation and toxicity response of silver nanoparticles in the terrestrial snail Achatina fulica under soil and food exposures[D]. Xiangtan: Xiangtan University, 2021(in Chinese).
|
[18] |
DUROUDIER N, CARDOSO C, MEHENNAOUI K, et al. Changes in protein expression in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated silver nanoparticles at different seasons [J]. Aquatic Toxicology, 2019, 210: 56-68. doi: 10.1016/j.aquatox.2019.02.010
|
[19] |
秦捷, 隋铭皓, 袁博杰, 等. 纳米银在水环境中的行为及毒性效应 [J]. 四川环境, 2017, 36(6): 155-160. doi: 10.3969/j.issn.1001-3644.2017.06.026
QIN J, SUI M H, YUAN B J, et al. The behavior and effects of silver nanoparticles in the aquatic environment [J]. Sichuan Environment, 2017, 36(6): 155-160(in Chinese). doi: 10.3969/j.issn.1001-3644.2017.06.026
|
[20] |
衣俊, 黄俊, 程金平. 纳米银在水环境中的环境行为和毒性效应研究进展 [J]. 生态毒理学报, 2015, 10(1): 101-109.
YI J, HUANG J, CHENG J P. Review of environmental behavior and toxicity of silver nanoparticles in the aquatic environment [J]. Asian Journal of Ecotoxicology, 2015, 10(1): 101-109(in Chinese).
|
[21] |
胡奕. 纳米银的大型蚤毒性效应与生物累积[D]. 杭州: 浙江大学, 2017.
HU Y. Toxicity and bioaccumulation of AgNPs to Daphnia magna[D]. Hangzhou: Zhejiang University, 2017(in Chinese).
|
[22] |
LI M, RUAN L Y, DANG F, et al. Metabolic response of earthworms (Pheretima guillemi) to silver nanoparticles in sludge-amended soil [J]. Environmental Pollution, 2022, 300: 118954. doi: 10.1016/j.envpol.2022.118954
|
[23] |
COZZARI M, ELIA A C, PACINI N, et al. Bioaccumulation and oxidative stress responses measured in the estuarine ragworm (Nereis diversicolor) exposed to dissolved, nano- and bulk-sized silver [J]. Environmental Pollution, 2015, 198: 32-40. doi: 10.1016/j.envpol.2014.12.015
|
[24] |
BAO S P, HUANG J L, LIU X W, et al. Tissue distribution of Ag and oxidative stress responses in the freshwater snail Bellamya aeruginosa exposed to sediment-associated Ag nanoparticles [J]. Science of the Total Environment, 2018, 644: 736-746. doi: 10.1016/j.scitotenv.2018.07.011
|
[25] |
KHAN F R, MISRA S K, BURY N R, et al. Inhibition of potential uptake pathways for silver nanoparticles in the estuarine snail Peringia ulvae [J]. Nanotoxicology, 2015, 9(4): 493-501. doi: 10.3109/17435390.2014.948519
|
[26] |
WESTMEIER D, CHEN C Y, STAUBER R H, et al. The bio-Corona and its impact on nanomaterial toxicity [J]. European Journal of Nanomedicine, 2015, 7(3): 153-168.
|
[27] |
CONG Y, BANTA G T, SELCK H, et al. Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor [J]. Aquatic Toxicology, 2014, 156: 106-115. doi: 10.1016/j.aquatox.2014.08.001
|
[28] |
王娜. 不同暴露途径下纳米银对大型溞的毒性效应[D]. 徐州: 中国矿业大学, 2021.
WANG N. Toxic effects of AgNPs on Daphnia magna under different exposure routes[D]. Xuzhou: China University of Mining and Technology, 2021(in Chinese).
|
[29] |
MAKAMA S, PIELLA J, UNDAS A, et al. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil [J]. Environmental Pollution, 2016, 218: 870-878. doi: 10.1016/j.envpol.2016.08.016
|
[30] |
MEHENNAOUI K, CAMBIER S, MINGUEZ L, et al. Sub-chronic effects of AgNPs and AuNPs on Gammarus fossarum (Crustacea Amphipoda): From molecular to behavioural responses [J]. Ecotoxicology and Environmental Safety, 2021, 210: 111775. doi: 10.1016/j.ecoenv.2020.111775
|
[31] |
RAMSKOV T, FORBES V E, GILLILAND D, et al. Accumulation and effects of sediment-associated silver nanoparticles to sediment-dwelling invertebrates [J]. Aquatic Toxicology, 2015, 166: 96-105. doi: 10.1016/j.aquatox.2015.07.002
|
[32] |
BUFFET P E, PAN J F, POIRIER L, et al. Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food [J]. Ecotoxicology and Environmental Safety, 2013, 89: 117-124. doi: 10.1016/j.ecoenv.2012.11.019
|
[33] |
CHAN C Y S, CHIU J M. Chronic effects of coated silver nanoparticles on marine invertebrate larvae: A proof of concept study [J]. PLoS One, 2015, 10(7): e0132457. doi: 10.1371/journal.pone.0132457
|
[34] |
CARRAZCO-QUEVEDO A, RÖMER I, SALAMANCA M J, et al. Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster) [J]. Ecotoxicology and Environmental Safety, 2019, 179: 127-134. doi: 10.1016/j.ecoenv.2019.04.032
|
[35] |
CONG Y, BANTA G T, SELCK H, et al. Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor [J]. Aquatic Toxicology (Amsterdam, Netherlands), 2011, 105(3/4): 403-411.
|
[36] |
GARCÍA-ALONSO J, RODRIGUEZ-SANCHEZ N, MISRA S K, et al. Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii [J]. Science of the Total Environment, 2014, 476/477: 688-695. doi: 10.1016/j.scitotenv.2014.01.039
|
[37] |
DUROUDIER N, KATSUMITI A, MIKOLACZYK M, et al. Cell and tissue level responses in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated Ag nanoparticles at two seasons [J]. Science of the Total Environment, 2021, 750: 141303. doi: 10.1016/j.scitotenv.2020.141303
|
[38] |
JO H J, CHOI J W, LEE S H, et al. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods [J]. Journal of Hazardous Materials, 2012, 227/228: 301-308. doi: 10.1016/j.jhazmat.2012.05.066
|
[39] |
IVASK A, KURVET I, KASEMETS K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro [J]. PLoS One, 2014, 9(7): e102108. doi: 10.1371/journal.pone.0102108
|
[40] |
MEYER J N, LORD C A, YANG X Y, et al. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans [J]. Aquatic Toxicology, 2010, 100(2): 140-150. doi: 10.1016/j.aquatox.2010.07.016
|
[41] |
ZHAO C M, WANG W X. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna [J]. Nanotoxicology, 2012, 6(4): 361-370. doi: 10.3109/17435390.2011.579632
|
[42] |
MACKEVICA A, SKJOLDING L M, GERGS A, et al. Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions [J]. Aquatic Toxicology, 2015, 161: 10-16. doi: 10.1016/j.aquatox.2015.01.023
|
[43] |
CONINE A L, REARICK D C, XENOPOULOS M A, et al. Variable silver nanoparticle toxicity to Daphnia in boreal lakes [J]. Aquatic Toxicology, 2017, 192: 1-6. doi: 10.1016/j.aquatox.2017.09.004
|
[44] |
HOU J, ZHOU Y, WANG C J, et al. Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean Daphnia magna [J]. Environmental Science & Technology, 2017, 51(21): 12868-12878.
|
[45] |
HU Y, CHEN X J, YANG K, et al. Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water [J]. Science of the Total Environment, 2018, 618: 838-846. doi: 10.1016/j.scitotenv.2017.08.222
|
[46] |
RIBEIRO F, GALLEGO-URREA J A, JURKSCHAT K, et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio [J]. Science of the Total Environment, 2014, 466/467: 232-241. doi: 10.1016/j.scitotenv.2013.06.101
|
[47] |
CUI R X, CHAE Y, AN Y J. Dimension-dependent toxicity of silver nanomaterials on the cladocerans Daphnia magna and Daphnia galeata [J]. Chemosphere, 2017, 185: 205-212. doi: 10.1016/j.chemosphere.2017.07.011
|
[48] |
LEKAMGE S, MIRANDA A F, ABRAHAM A, et al. The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata, and Paratya australiensis [J]. Frontiers in Environmental Science, 2018, 6: 152. doi: 10.3389/fenvs.2018.00152
|
[49] |
陆梦甜. 脂质体包封银(AgNPs、Ag+)对大型溞的毒性效应研究[D]. 徐州: 中国矿业大学, 2019.
LU M T. Toxic effects of liposome-encapsulated silver (AgNPs, Ag+) on Daphnia magna[D]. Xuzhou: China University of Mining and Technology, 2019(in Chinese).
|
[50] |
JASSIM A Y, WANG J J, CHUNG K W, et al. Comparative assessment of the fate and toxicity of chemically and biologically synthesized silver nanoparticles to juvenile clams [J]. Colloids and Surfaces B:Biointerfaces, 2022, 209: 112173. doi: 10.1016/j.colsurfb.2021.112173
|
[51] |
LITTLE S, JOHNSTON H J, STONE V, et al. Acute waterborne and chronic sediment toxicity of silver and titanium dioxide nanomaterials towards the oligochaete, Lumbriculus variegatus [J]. NanoImpact, 2021, 21: 100291. doi: 10.1016/j.impact.2020.100291
|
[52] |
AN H J, SARKHEIL M, PARK H S, et al. Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 218: 62-69.
|
[53] |
NASIR S, WALTERS K F A, PEREIRA R M, et al. Larvicidal activity of acetone extract and green synthesized silver nanoparticles from Allium sativum L. (Amaryllidaceae) against the dengue vector Aedes aegypti L. (Diptera: Culicidae) [J]. Journal of Asia-Pacific Entomology, 2022, 25(3): 101937. doi: 10.1016/j.aspen.2022.101937
|
[54] |
ELUMALAI D, HEMAVATHI M, DEENADHAYALAN N, et al. A novel approach for synthesis of silver nanoparticles using Pila virens shell and its mosquito larvicidal activity [J]. Toxicology Reports, 2021, 8: 1248-1254. doi: 10.1016/j.toxrep.2021.06.018
|
[55] |
DUMMEE V, TANHAN P, KRUATRACHUE M, et al. Histopathological changes in snail, Pomacea canaliculata, exposed to sub-lethal copper sulfate concentrations [J]. Ecotoxicology and Environmental Safety, 2015, 122: 290-295. doi: 10.1016/j.ecoenv.2015.08.010
|
[56] |
CHEN L, MENG X, GU J, et al. Silver nanoparticle toxicity in silkworms: Omics technologies for a mechanistic understanding [J]. Ecotoxicology and Environmental Safety, 2019, 172: 388-395. doi: 10.1016/j.ecoenv.2019.01.055
|
[57] |
LUO X, ZHANG Y J, FU X L, et al. Effects of environmental factor fulvic acid on AgNPs food chain delivery and bioavailability [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2022, 258: 109369.
|
[58] |
VÖLKER C, BOEDICKER C, DAUBENTHALER J, et al. Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments [J]. PLoS One, 2013, 8(10): e75026. doi: 10.1371/journal.pone.0075026
|
[59] |
LIM D, ROH J Y, EOM H J, et al. Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans [J]. Environmental Toxicology and Chemistry, 2012, 31(3): 585-592. doi: 10.1002/etc.1706
|
[60] |
NAIR P M G, PARK S Y, LEE S W, et al. Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius [J]. Aquatic Toxicology, 2011, 101(1): 31-37. doi: 10.1016/j.aquatox.2010.08.013
|
[61] |
李婷竹. 不同特性纳米银制备及遗传毒性定量研究[D]. 南京: 东南大学, 2017.
LI T Z. Study on preparation and genotoxicity of silver nanoparticles with different characteristics[D]. Nanjing: Southeast University, 2017(in Chinese).
|
[62] |
CYPRIYANA P J J, S S, ANGALENE J L A, et al. Overview on toxicity of nanoparticles, it's mechanism, models used in toxicity studies and disposal methods - A review [J]. Biocatalysis and Agricultural Biotechnology, 2021, 36: 102117. doi: 10.1016/j.bcab.2021.102117
|
[63] |
CHOI J S, PARK J W. Molecular characterization and toxicological effects of citrate-coated silver nanoparticles in a terrestrial invertebrate, the earthworm (Eisenia fetida) [J]. Molecular & Cellular Toxicology, 2015, 11(4): 423-431.
|
[64] |
ALARABY M, ROMERO S, HERNÁNDEZ A, et al. Toxic and genotoxic effects of silver nanoparticles in Drosophila [J]. Environmental and Molecular Mutagenesis, 2019, 60(3): 277-285. doi: 10.1002/em.22262
|
[65] |
BOTELHO M T, de ARRUDA ROCHA CAMPOS PASSOS M J, TREVIZANI T H, et al. Genotoxic effects of silver nanoparticles on a tropical marine amphipod via feeding exposure [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2022, 881: 503527. doi: 10.1016/j.mrgentox.2022.503527
|
[66] |
WAMUCHO A, HEFFLEY A, TSYUSKO O V. Epigenetic effects induced by silver nanoparticles in Caenorhabditis elegans after multigenerational exposure [J]. Science of the Total Environment, 2020, 725: 138523. doi: 10.1016/j.scitotenv.2020.138523
|
[67] |
PAKRASHI S, TAN C, WANG W X. Bioaccumulation-based silver nanoparticle toxicity in Daphnia magna and maternal impacts [J]. Environmental Toxicology and Chemistry, 2017, 36(12): 3359-3366. doi: 10.1002/etc.3917
|
[68] |
卜春红, 高大文. 蚯蚓回避反应在生态毒理研究中的应用进展[J]. 农业环境科学学报, 2006, 25(S2): 799-804.
BU C H, GAO D W. Application progress of earthworm avoidance response test in ecotoxicity research[J]. Journal of Agro-Environment Science, 2006, 25(Sup 2): 799-804(in Chinese).
|
[69] |
GONZÁLEZ-ALCARAZ M N, MALHEIRO C, CARDOSO D N, et al. Soil moisture influences the avoidance behavior of invertebrate species in anthropogenic metal(loid)-contaminated soils [J]. Environmental Pollution, 2019, 248: 546-554. doi: 10.1016/j.envpol.2019.01.105
|
[70] |
SAHA S, CHUKWUKA A V, MUKHERJEE D, et al. Behavioral and physiological toxicity thresholds of a freshwater vertebrate (Heteropneustes fossilis) and invertebrate (Branchiura sowerbyi), exposed to zinc oxide nanoparticles (nZnO): A General Unified Threshold model of Survival (GUTS) [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2022, 262: 109450.
|
[71] |
ZIDAR P, KOS M, ILIČ E, et al. Avoidance behaviour of isopods (Porcellio scaber) exposed to food or soil contaminated with Ag- and CeO2- nanoparticles [J]. Applied Soil Ecology, 2019, 141: 69-78. doi: 10.1016/j.apsoil.2019.05.011
|
[72] |
王秀娟, 薛玉英, 唐萌. 纳米银的体内毒性及毒作用机制研究进展 [J]. 生态毒理学报, 2018, 13(1): 50-60. doi: 10.7524/AJE.1673-5897.20170424002
WANG X J, XUE Y Y, TANG M. Research progress on internal toxicity and the toxic mechanism of silver nanoparticles [J]. Asian Journal of Ecotoxicology, 2018, 13(1): 50-60(in Chinese). doi: 10.7524/AJE.1673-5897.20170424002
|
[73] |
MANKE A, WANG L Y, ROJANASAKUL Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity [J]. BioMed Research International, 2013, 2013: 942916.
|
[74] |
PAN Y B, LIN S J, ZHANG W J. Epigenetic effects of silver nanoparticles and ionic silver in Tetrahymena thermophila [J]. Science of the Total Environment, 2021, 768: 144659. doi: 10.1016/j.scitotenv.2020.144659
|
[75] |
AHAMED M, POSGAI R, GOREY T J, et al. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster [J]. Toxicology and Applied Pharmacology, 2010, 242(3): 263-269. doi: 10.1016/j.taap.2009.10.016
|
[76] |
KHODAPARAST Z, van GESTEL C A M, PAPADIAMANTIS A G, et al. Toxicokinetics of silver nanoparticles in the mealworm Tenebrio molitor exposed via soil or food [J]. Science of the Total Environment, 2021, 777: 146071. doi: 10.1016/j.scitotenv.2021.146071
|
[77] |
MEHENNAOUI K, CAMBIER S, SERCHI T, et al. Do the pristine physico-chemical properties of silver and gold nanoparticles influence uptake and molecular effects on Gammarus fossarum (Crustacea Amphipoda)? [J]. Science of the Total Environment, 2018, 643: 1200-1215. doi: 10.1016/j.scitotenv.2018.06.208
|
[78] |
KUSI J, MAIER K J. Evaluation of silver nanoparticle acute and chronic effects on freshwater amphipod (Hyalella azteca) [J]. Aquatic Toxicology, 2022, 242: 106016. doi: 10.1016/j.aquatox.2021.106016
|
[79] |
MOON J, KWAK J I, AN Y J. The effects of silver nanomaterial shape and size on toxicity to Caenorhabditis elegans in soil media [J]. Chemosphere, 2019, 215: 50-56. doi: 10.1016/j.chemosphere.2018.09.177
|
[80] |
CONINE A L, FROST P C. Variable toxicity of silver nanoparticles to Daphnia magna: Effects of algal particles and animal nutrition [J]. Ecotoxicology (London, England), 2017, 26(1): 118-126. doi: 10.1007/s10646-016-1747-2
|
[81] |
GAO J, POWERS K, WANG Y, et al. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles [J]. Chemosphere, 2012, 89(1): 96-101. doi: 10.1016/j.chemosphere.2012.04.024
|
[82] |
MENDONÇA M C P, RODRIGUES N P, SCOTT-FORDSMAND J J, et al. The toxicity of silver nanomaterials (NM 300K) is reduced when combined with N-Acetylcysteine: Hazard assessment on Enchytraeus crypticus [J]. Environmental Pollution, 2020, 256: 113484. doi: 10.1016/j.envpol.2019.113484
|
[83] |
ASADI DOKHT LISH R, JOHARI S A, SARKHEIL M, et al. On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): A case of silver nanoparticles toxicity [J]. Environmental Pollution, 2019, 255: 113358. doi: 10.1016/j.envpol.2019.113358
|
[84] |
许志珍, 赵鹏, 张元宝, 等. 人工纳米材料对典型生物的毒性效应研究进展 [J]. 安全与环境学报, 2017, 17(2): 786-792.
XU Z Z, ZHAO P, ZHANG Y B, et al. Research progress review in the toxic effects of the engineering nanomaterials on the typical organisms [J]. Journal of Safety and Environment, 2017, 17(2): 786-792(in Chinese).
|
[85] |
LIU H Q, WANG X X, WU Y Z, et al. Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings [J]. Environmental Pollution, 2019, 246: 414-422. doi: 10.1016/j.envpol.2018.12.034
|
[86] |
GHETAS H A, ABDEL-RAZEK N, SHAKWEER M S, et al. Antimicrobial activity of chemically and biologically synthesized silver nanoparticles against some fish pathogens [J]. Saudi Journal of Biological Sciences, 2022, 29(3): 1298-1305. doi: 10.1016/j.sjbs.2021.11.015
|
[87] |
刘艳娥. 分散剂在纳米银制备中的影响 [J]. 山东化工, 2015, 44(3): 90-91,97. doi: 10.3969/j.issn.1008-021X.2015.03.030
LIU Y E. The impact of the dispersant in the preparation of silver nanoparticles [J]. Shandong Chemical Industry, 2015, 44(3): 90-91,97(in Chinese). doi: 10.3969/j.issn.1008-021X.2015.03.030
|
[88] |
JU-NAM Y, LEAD J R. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications [J]. Science of the Total Environment, 2008, 400(1/2/3): 396-414.
|
[89] |
BURKOWSKA-BUT A, SIONKOWSKI G, WALCZAK M. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water [J]. Journal of Environmental Sciences, 2014, 26(3): 542-549. doi: 10.1016/S1001-0742(13)60451-9
|
[90] |
COURTOIS P, RORAT A, LEMIERE S, et al. Medium-term effects of Ag supplied directly or via sewage sludge to an agricultural soil on Eisenia fetida earthworm and soil microbial communities [J]. Chemosphere, 2021, 269: 128761. doi: 10.1016/j.chemosphere.2020.128761
|