[1] |
SILAS K, WAN AZLINA WAN AB KARIM GHANI, CHOONG T S Y, et al. Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: A review [J]. Catalysis Reviews, 2019, 61(1): 134-161. doi: 10.1080/01614940.2018.1482641
|
[2] |
ROLLINS A W, BROWNE E C, MIN K E, et al. Evidence for NOx control over nighttime SOA formation [J]. Science, 2012, 337(6099): 1210-1212. doi: 10.1126/science.1221520
|
[3] |
KAMPA M, CASTANAS E. Human health effects of air pollution [J]. Environmental Pollution, 2008, 151(2): 362-367. doi: 10.1016/j.envpol.2007.06.012
|
[4] |
LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale [J]. Nature, 2015, 525(7569): 367-371. doi: 10.1038/nature15371
|
[5] |
MOSTAFAVI N, VLAANDEREN J, CHADEAU-HYAM M, et al. Inflammatory markers in relation to long-term air pollution [J]. Environment International, 2015, 81: 1-7. doi: 10.1016/j.envint.2015.04.003
|
[6] |
ZENG Y Y, CAO Y F, QIAO X, et al. Air pollution reduction in China: Recent success but great challenge for the future [J]. Science of the Total Environment, 2019, 663: 329-337. doi: 10.1016/j.scitotenv.2019.01.262
|
[7] |
中华人民共和国生态环境部. 2016-2019年全国生态环境统计公报[R]. 2020.
Ministry of Ecology and Environment of the People's Republic of China. National Ecological and Environmental Statistics Bulletin: 2016-2019 [R]. 2020 (in Chinese).
|
[8] |
汤铃, 贾敏, 伯鑫, 等. 中国钢铁行业排放清单及大气环境影响研究 [J]. 中国环境科学, 2020, 40(4): 1493-1506. doi: 10.3969/j.issn.1000-6923.2020.04.014
TANG L, JIA M, BO X, et al. High resolution emission inventory and atmospheric environmental impact research in Chinese iron and steel industry [J]. China Environmental Science, 2020, 40(4): 1493-1506(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.014
|
[9] |
张道军, 马子然, 王宝冬, 等. SCR脱硝技术在非电行业烟气治理中的应用进展 [J]. 现代化工, 2019, 39(10): 24-28.
ZHANG D J, MA Z R, WANG B D, et al. Progress in application of SCR denitrification technology in treating flue gas of non-electric industries [J]. Modern Chemical Industry, 2019, 39(10): 24-28(in Chinese).
|
[10] |
王修文, 李露露, 孙敬方, 等. 我国氮氧化物排放控制及脱硝催化剂研究进展 [J]. 工业催化, 2019, 27(2): 1-23. doi: 10.3969/j.issn.1008-1143.2019.02.001
WANG X W, LI L L, SUN J F, et al. Analysis of NOx emission and control in China and research progress in denitration catalysts [J]. Industrial Catalysis, 2019, 27(2): 1-23(in Chinese). doi: 10.3969/j.issn.1008-1143.2019.02.001
|
[11] |
汤常金, 孙敬方, 董林. 超低温(<150℃)SCR脱硝技术研究进展 [J]. 化工学报, 2020, 71(11): 4873-4884,5362.
TANG C J, SUN J F, DONG L. Recent progress on elimination of NOx from flue gas via SCR technology under ultra-low temperatures(<150℃) [J]. CIESC Journal, 2020, 71(11): 4873-4884,5362(in Chinese).
|
[12] |
周涛, 刘少光, 唐名早, 等. 选择性催化还原脱硝催化剂研究进展 [J]. 硅酸盐学报, 2009, 37(2): 317-324. doi: 10.3321/j.issn:0454-5648.2009.02.029
ZHOU T, LIU S G, TANG M Z, et al. Research progress on selective catalytic reduction de-NOx catalysts [J]. Journal of the Chinese Ceramic Society, 2009, 37(2): 317-324(in Chinese). doi: 10.3321/j.issn:0454-5648.2009.02.029
|
[13] |
CHAIEB T, DELANNOY L, CASALE S, et al. Evidence for an H2 promoting effect in the selective catalytic reduction of NOx by propene on Au/Al2O3 [J]. Chemical Communications (Cambridge, England), 2015, 51(4): 796-799. doi: 10.1039/C4CC07349E
|
[14] |
NGUYEN L Q, SALIM C, HINODE H. Roles of nano-sized Au in the reduction of NOx by propene over Au/TiO2: An in situ DRIFTS study [J]. Applied Catalysis B:Environmental, 2010, 96(3/4): 299-306.
|
[15] |
MORE P M, NGUYEN D L, GRANGER P, et al. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust [J]. Applied Catalysis B:Environmental, 2015, 174/175: 145-156. doi: 10.1016/j.apcatb.2015.02.035
|
[16] |
KANG M, KIM D J, PARK E D, et al. Two-stage catalyst system for selective catalytic reduction of NOx by NH3 at low temperatures [J]. Applied Catalysis B:Environmental, 2006, 68(1/2): 21-27.
|
[17] |
LAN T W, ZHAO Y F, DENG J, et al. Selective catalytic oxidation of NH3 over noble metal-based catalysts: State of the art and future prospects [J]. Catalysis Science & Technology, 2020, 10(17): 5792-5810.
|
[18] |
CAMPA M C, DOYLE A M, FIERRO G, et al. Simultaneous abatement of NO and N2O with CH4 over modified Al2O3 supported Pt, Pd, Rh [J]. Catalysis Today, 2022, 384/385/386: 76-87.
|
[19] |
LI J H, CHANG H Z, MA L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review [J]. Catalysis Today, 2011, 175(1): 147-156. doi: 10.1016/j.cattod.2011.03.034
|
[20] |
SHAN Y, LIU Y X, LI Y, et al. A review on application of cerium-based oxides in gaseous pollutant purification [J]. Separation and Purification Technology, 2020, 250: 117181. doi: 10.1016/j.seppur.2020.117181
|
[21] |
JABŁOŃSKA M, PALKOVITS R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour—Recent trends and open challenges [J]. Applied Catalysis B:Environmental, 2016, 181: 332-351. doi: 10.1016/j.apcatb.2015.07.017
|
[22] |
HUSNAIN N, WANG E L, LI K, et al. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3 [J]. Reviews in Chemical Engineering, 2019, 35(2): 239-264. doi: 10.1515/revce-2017-0064
|
[23] |
XU J Q, CHEN G R, GUO F, et al. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia: Review [J]. Chemical Engineering Journal, 2018, 353: 507-518. doi: 10.1016/j.cej.2018.05.047
|
[24] |
TIAN H Y, PING Y, ZHANG Y B, et al. Atomic layer deposition of silica to improve the high-temperature hydrothermal stability of Cu-SSZ-13 for NH3 SCR of NOx [J]. Journal of Hazardous Materials, 2021, 416: 126194. doi: 10.1016/j.jhazmat.2021.126194
|
[25] |
MOHAN S, DINESHA P, KUMAR S. NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review [J]. Chemical Engineering Journal, 2020, 384: 123253. doi: 10.1016/j.cej.2019.123253
|
[26] |
SJÖVALL H, BLINT R J, OLSSON L. Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5 [J]. Applied Catalysis B:Environmental, 2009, 92(1/2): 138-153.
|
[27] |
NIU C, SHI X Y, LIU F D, et al. High hydrothermal stability of Cu-SAPO-34 catalysts for the NH3-SCR of NOx [J]. Chemical Engineering Journal, 2016, 294: 254-263. doi: 10.1016/j.cej.2016.02.086
|
[28] |
GAO F, WASHTON N M, WANG Y L, et al. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: Implications for the active Cu species and the roles of Brønsted acidity [J]. Journal of Catalysis, 2015, 331: 25-38. doi: 10.1016/j.jcat.2015.08.004
|
[29] |
MIHAI O, WIDYASTUTI C R, ANDONOVA S, et al. The effect of Cu-loading on different reactions involved in NH3-SCR over Cu-BEA catalysts [J]. Journal of Catalysis, 2014, 311: 170-181. doi: 10.1016/j.jcat.2013.11.016
|
[30] |
王艳莉, 何自国, 李晓晓, 等. 碳基催化剂上低温NH3选择性催化还原NO的研究进展 [J]. 化学工业与工程, 2015, 32(3): 46-52.
WANG Y L, HE Z G, LI X X, et al. Research progress on carbon supported catalysts for low temperature selective catalytic reduction of NO with NH3 [J]. Chemical Industry and Engineering, 2015, 32(3): 46-52(in Chinese).
|
[31] |
苏云, 邵萍, 眭国荣, 等. 玻璃熔窑烟气脱硝技术探讨 [J]. 环境工程, 2012, 30(4): 73-75,52. doi: 10.13205/j.hjgc.2012.04.004
SU Y, SHAO P, SUI G R, et al. Study on technologies of flue gas denitration in glass furnaces [J]. Environmental Engineering, 2012, 30(4): 73-75,52(in Chinese). doi: 10.13205/j.hjgc.2012.04.004
|
[32] |
唐志雄, 岑超平, 陈雄波, 等. 平板玻璃工业窑炉烟气中低温SCR脱硝中试研究 [J]. 环境工程学报, 2015, 9(2): 817-822.
TANG Z X, CEN C P, CHEN X B, et al. Pilot-scale study on SCR technology applied in flue gas deNOx of flat glass furnaces at low & middle temperatures [J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 817-822(in Chinese).
|
[33] |
刘海兵, 顾军, 李威, 等. Ce掺杂TiO2-V2O5-WO3催化剂在水泥窑脱硝中的应用 [J]. 环境污染与防治, 2019, 41(6): 668-671.
LIU H B, GU J, LI W, et al. Denitration application of Ce additive TiO2-V2O5-WO3 catalyst in cement kiln [J]. Environmental Pollution & Control, 2019, 41(6): 668-671(in Chinese).
|
[34] |
能士峰, 刘庆岭, 张旺, 等. 垃圾焚烧SCR脱硝催化剂的研究进展 [J]. 现代化工, 2022, 42(2): 31-34.
NAI S F, LIU Q L, ZHANG W, et al. Research progress on application of SCR denitrification catalyst in waste incineration [J]. Modern Chemical Industry, 2022, 42(2): 31-34(in Chinese).
|
[35] |
WU Y J, LUO C H, WU W, et al. Denitration of the gas-fired boiler flue gas based on chemical-looping combustion [J]. Chemical Engineering Journal, 2019, 361: 41-49. doi: 10.1016/j.cej.2018.12.013
|
[36] |
郑足红, 童华, 童志权, 等. Mn-V-Ce/TiO2低温催化还原NO性能研究 [J]. 燃料化学学报, 2010, 38(3): 343-351.
ZHENG Z H, TONG H, TONG Z Q, et al. Catalytic reduction of NO over Mn-V-Ce/TiO2 catalysts at low reaction temperature [J]. Journal of Fuel Chemistry and Technology, 2010, 38(3): 343-351(in Chinese).
|
[37] |
SUN W Q, ZHOU Y, LV J X, et al. Assessment of multi-air emissions: Case of particulate matter (dust), SO2, NOx and CO2 from iron and steel industry of China [J]. Journal of Cleaner Production, 2019, 232: 350-358. doi: 10.1016/j.jclepro.2019.05.400
|
[38] |
钟悦之, 宋晓晖, 王彦超, 等. 中国平板玻璃行业大气污染物排放特征研究 [J]. 中国环境科学, 2018, 38(12): 4451-4459. doi: 10.19674/j.cnki.issn1000-6923.2018.0499
ZHONG Y Z, SONG X H, WANG Y C, et al. Emission characteristics from flat-glass industry in China [J]. China Environmental Science, 2018, 38(12): 4451-4459(in Chinese). doi: 10.19674/j.cnki.issn1000-6923.2018.0499
|
[39] |
CHEN Y X, LI C, CHEN J X, et al. Self-prevention of well-defined-facet Fe2O3/MoO3 against deposition of ammonium bisulfate in low-temperature NH3-SCR [J]. Environmental Science & Technology, 2018, 52(20): 11796-11802.
|
[40] |
ZHANG L, WANG D, LIU Y, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst [J]. Applied Catalysis B:Environmental, 2014, 156/157: 371-377. doi: 10.1016/j.apcatb.2014.03.030
|
[41] |
WANG H J, HUANG B C, YU C L, et al. Research progress, challenges and perspectives on the sulfur and water resistance of catalysts for low temperature selective catalytic reduction of NOx by NH3 [J]. Applied Catalysis A:General, 2019, 588: 117207. doi: 10.1016/j.apcata.2019.117207
|
[42] |
XU G Y, GUO X L, CHENG X X, et al. A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance [J]. Nanoscale, 2021, 13(15): 7052-7080. doi: 10.1039/D1NR00248A
|
[43] |
GAO C, SHI J W, FAN Z Y, et al. Sulfur and water resistance of Mn-based catalysts for low-temperature selective catalytic reduction of NOx: A review [J]. Catalysts, 2018, 8(1): 11. doi: 10.3390/catal8010011
|
[44] |
HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects [J]. Chemical Reviews, 2019, 119(19): 10916-10976. doi: 10.1021/acs.chemrev.9b00202
|
[45] |
LI Y F, HOU Y Q, ZHANG Y Z, et al. Confinement of MnOx@Fe2O3 core-shell catalyst with titania nanotubes: Enhanced N2 selectivity and SO2 tolerance in NH3- SCR process [J]. Journal of Colloid and Interface Science, 2022, 608: 2224-2234. doi: 10.1016/j.jcis.2021.10.078
|
[46] |
JEON S W, SONG I, LEE H, et al. Enhanced SO2 resistance of V2O5/WO3−TiO2 catalyst physically mixed with alumina for the selective catalytic reduction of NOx with NH3 [J]. Chemical Engineering Journal, 2022, 433: 133836. doi: 10.1016/j.cej.2021.133836
|
[47] |
YANG L, WANG P C, YAO L, et al. Copper doping promotion on Ce/CAC-CNT catalysts with high sulfur dioxide tolerance for low-temperature NH3–SCR [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 987-997.
|
[48] |
GUO K, JI J W, SONG W, et al. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review [J]. Applied Catalysis B:Environmental, 2021, 297: 120388. doi: 10.1016/j.apcatb.2021.120388
|
[49] |
GUO K, FAN G F, GU D, et al. Pore size expansion accelerates ammonium bisulfate decomposition for improved sulfur resistance in low-temperature NH3-SCR [J]. ACS Applied Materials & Interfaces, 2019, 11(5): 4900-4907.
|
[50] |
ZHANG L, ZOU W X, MA K L, et al. Sulfated temperature effects on the catalytic activity of CeO2 in NH3-selective catalytic reduction conditions [J]. The Journal of Physical Chemistry C, 2015, 119(2): 1155-1163. doi: 10.1021/jp511282c
|
[51] |
ZHANG L, LI L L, CAO Y, et al. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3 [J]. Applied Catalysis B:Environmental, 2015, 165: 589-598. doi: 10.1016/j.apcatb.2014.10.029
|
[52] |
LI S C, HUANG W J, XU H M, et al. Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas [J]. Applied Catalysis B:Environmental, 2020, 270: 118872. doi: 10.1016/j.apcatb.2020.118872
|
[53] |
杜勇乐, 刘鹤欣, 谭厚章, 等. 燃煤水泥窑尾颗粒物粒径分布及污染特征 [J]. 环境工程, 2019, 37(9): 113-118,148. doi: 10.13205/j.hjgc.201909021
DU Y L, LIU H X, TAN H Z, et al. Characteristics of distribution and emission for fine particulates from a cement kiln tail [J]. Environmental Engineering, 2019, 37(9): 113-118,148(in Chinese). doi: 10.13205/j.hjgc.201909021
|
[54] |
CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3 [J]. Chemical Engineering Journal, 2011, 170(2/3): 531-537.
|
[55] |
WANG C, WANG C, WANG J, et al. Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction [J]. Journal of Environmental Sciences, 2018, 70: 20-28. doi: 10.1016/j.jes.2017.11.002
|
[56] |
LIU T Y, JIANG Y, YANG Z D, et al. Insight into the influence of K on the adsorption performance and reaction pathways of CeO2/TiO2 catalyst [J]. Fuel, 2022, 312: 122813. doi: 10.1016/j.fuel.2021.122813
|
[57] |
何德良, 任慧莺, 朱天时, 等. V2O5-WO3/TiO2 SCR催化剂的钙中毒机理研究 [J]. 应用基础与工程科学学报, 2018, 26(1): 1-11.
HE D L, REN H Y, ZHU T S, et al. Study on the calcium-poisoning mechanism of the V2O5-WO3/TiO2 SCR catalyst [J]. Journal of Basic Science and Engineering, 2018, 26(1): 1-11(in Chinese).
|
[58] |
JI J W, TANG Y, HAN L, et al. Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance [J]. Chemical Engineering Journal, 2022, 445: 136530. doi: 10.1016/j.cej.2022.136530
|
[59] |
KIJLSTRA W S, BRANDS D S, POELS E K, et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. 1. Adsorption and desorption of the single reaction components [J]. Journal of Catalysis, 1997, 171(1): 208-218. doi: 10.1006/jcat.1997.1788
|
[60] |
KIJLSTRA W S, BRANDS D S, POELS E K, et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. 2. Reactivity of adsorbed NH3 and NO complexes [J]. Journal of Catalysis, 1997, 171(1): 219-230. doi: 10.1006/jcat.1997.1789
|
[61] |
李云涛, 钟秦. 低温NH3-SCR反应机理及动力学研究进展 [J]. 化学进展, 2009, 21(6): 1094-1100.
LI Y T, ZHONG Q. Recent advances in mechanisms and kinetics of low-temperature selective catalytic reduction of NOx with NH3 [J]. Progress in Chemistry, 2009, 21(6): 1094-1100(in Chinese).
|
[62] |
YU S H, JIANG N X, ZOU W X, et al. A general and inherent strategy to improve the water tolerance of low temperature NH3-SCR catalysts via trace SiO2 deposition [J]. Catalysis Communications, 2016, 84: 75-79. doi: 10.1016/j.catcom.2016.06.001
|
[63] |
GUO K, JI J W, OSUGA R, et al. Construction of Fe2O3 loaded and mesopore confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance [J]. Applied Catalysis B:Environmental, 2021, 287: 119982. doi: 10.1016/j.apcatb.2021.119982
|
[64] |
ZHU Y J, XIAO X X, WANG J T, et al. Enhanced activity and water resistance of hierarchical flower-like Mn-Co binary oxides for ammonia-SCR reaction at low temperature [J]. Applied Surface Science, 2021, 569: 150989. doi: 10.1016/j.apsusc.2021.150989
|
[65] |
房晶瑞, 马忠诚, 汪澜. 水泥窑炉烟气催化还原脱硝技术研究进展 [J]. 环境污染与防治, 2013, 35(2): 85-92. doi: 10.3969/j.issn.1001-3865.2013.02.018
FANG J R, MA Z C, WANG L. Research progress on catalytic reduction technique for denitration of cement flue gas [J]. Environmental Pollution & Control, 2013, 35(2): 85-92(in Chinese). doi: 10.3969/j.issn.1001-3865.2013.02.018
|
[66] |
陆强, 裴鑫琦, 徐明新, 等. SCR脱硝催化剂抗砷中毒改性优化与再生研究进展 [J]. 化工进展, 2021, 40(5): 2365-2374. doi: 10.16085/j.issn.1000-6613.2020-1072
LU Q, PEI X Q, XU M X, et al. Progress in the development and regeneration of SCR catalysts for anti-arsenic poisoning [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2365-2374(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1072
|
[67] |
LI X, LI J H, PENG Y, et al. Mechanism of arsenic poisoning on SCR catalyst of CeW/Ti and its novel efficient regeneration method with hydrogen [J]. Applied Catalysis B:Environmental, 2016, 184: 246-257. doi: 10.1016/j.apcatb.2015.11.042
|
[68] |
JIANG S, LI T, ZHENG J K, et al. Unveiling the remarkable arsenic resistance origin of alumina promoted cerium-tungsten catalysts for NH3-SCR [J]. Environmental Science & Technology, 2020, 54(22): 14740-14749.
|
[69] |
JIANG Y, GAO X, ZHANG Y X, et al. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts [J]. Journal of Hazardous Materials, 2014, 274: 270-278. doi: 10.1016/j.jhazmat.2014.04.026
|
[70] |
JIANG Y, LIANG G T, BAO C Z, et al. The poisoning effect of PbO and PbCl2 on CeO2-TiO2 catalyst for selective catalytic reduction of NO with NH3 [J]. Journal of Colloid and Interface Science, 2018, 528: 82-91. doi: 10.1016/j.jcis.2018.05.061
|
[71] |
ALI Z, WU Y W, WU Y, et al. Inhibition effects of Pb species on the V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3: A DFT supported experimental study [J]. Applied Surface Science, 2020, 525: 146582. doi: 10.1016/j.apsusc.2020.146582
|
[72] |
CAI J, WU H X, REN Q Q, et al. Innovative NOx reduction from cement kiln and pilot-scale experimental verification [J]. Fuel Processing Technology, 2020, 199: 106306. doi: 10.1016/j.fuproc.2019.106306
|
[73] |
刘兴誉, 贾媛媛, 唐中华, 等. 废旧SCR脱硝催化剂再生研究进展 [J]. 应用化工, 2020, 49(7): 1839-1844. doi: 10.16581/j.cnki.issn1671-3206.20200416.016
LIU X Y, JIA Y Y, TANG Z H, et al. Research progress on regeneration of waste SCR denitration catalyst [J]. Applied Chemical Industry, 2020, 49(7): 1839-1844(in Chinese). doi: 10.16581/j.cnki.issn1671-3206.20200416.016
|
[74] |
REN X S, OU Z L, WU B. Low-temperature selective catalytic reduction DeNOx and regeneration of Mn-Cu catalyst supported by activated coke [J]. Materials (Basel, Switzerland), 2021, 14(20): 5958. doi: 10.3390/ma14205958
|
[75] |
张先龙, 马康, 蔡程, 等. MnOx/PG低温SCR催化剂二氧化硫中毒及再生特性 [J]. 环境化学, 2019, 38(6): 1403-1412. doi: 10.7524/j.issn.0254-6108.2018090503
ZHANG X L, MA K, CAI C, et al. Sulfur dioxide poisoning and regeneration characteristics of MnOx/PG low temperature SCR catalysts [J]. Environmental Chemistry, 2019, 38(6): 1403-1412(in Chinese). doi: 10.7524/j.issn.0254-6108.2018090503
|
[76] |
ZHANG X L, LIU S W, MA K, et al. Study on the mechanism of SO2 poisoning of MnOx/PG for lower temperature SCR by simple washing regeneration [J]. Catalysts, 2021, 11(11): 1360. doi: 10.3390/catal11111360
|
[77] |
CHEN Z, BIAN C, GUO Y B, et al. Efficient strategy to regenerate phosphorus-poisoned Cu-SSZ-13 catalysts for the NH3-SCR of NOx: The deactivation and promotion mechanism of phosphorus [J]. ACS Catalysis, 2021, 11(21): 12963-12976. doi: 10.1021/acscatal.1c03752
|
[78] |
MA Y, WU X D, LIU L P, et al. Critical roles of Cu(OH)2 in low-temperature moisture-induced degradation of Cu-SAPO-34 SCR catalyst: Correlating reversible and irreversible deactivation [J]. Applied Catalysis B:Environmental, 2020, 278: 119306. doi: 10.1016/j.apcatb.2020.119306
|
[79] |
WANG Y Z, YI W, YU J, et al. Novel methods for assessing the SO2 poisoning effect and thermal regeneration possibility of MOx-WO3/TiO2 (M = Fe, Mn, Cu, and V) catalysts for NH3-SCR [J]. Environmental Science & Technology, 2020, 54(19): 12612-12620.
|
[80] |
KIM J, HO KIM D, HA H P. Investigating multi-functional traits of metal-substituted vanadate catalysts in expediting NOX reduction and poison degradation at low temperatures [J]. Journal of Hazardous Materials, 2020, 397: 122671. doi: 10.1016/j.jhazmat.2020.122671
|
[81] |
WANG X X, MA H Y, SHI Y, et al. Regeneration of alkali poisoned TiO2-based catalyst by various acids in NO selective catalytic reduction with NH3 [J]. Fuel, 2021, 285: 119069. doi: 10.1016/j.fuel.2020.119069
|
[82] |
赵重阳, 李国波, 眭华军, 等. 砷中毒商业V2O5-WO3/TiO2催化剂再生研究 [J]. 分子催化, 2020, 34(5): 407-414. doi: 10.3724/SP.J.7103291361
ZHAO C Y, LI G B, SUI H J, et al. Study on regeneration of commercial V2O5-WO3/TiO2 catalyst for arsenic poisoning [J]. Journal of Molecular Catalysis (China), 2020, 34(5): 407-414(in Chinese). doi: 10.3724/SP.J.7103291361
|
[83] |
SONG L Y, CHAO J D, FANG Y J, et al. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction [J]. Chemical Engineering Journal, 2016, 303: 275-281. doi: 10.1016/j.cej.2016.05.124
|
[84] |
LI X S, LIU C D, LI X, et al. A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst [J]. Catalysis Communications, 2017, 100: 112-116. doi: 10.1016/j.catcom.2017.06.034
|
[85] |
NIU T Q, WANG J, CHU H C, et al. Deep removal of arsenic from regenerated products of spent V2O5-WO3/TiO2 SCR catalysts and its concurrent activation by bioleaching through a novel mechanism [J]. Chemical Engineering Journal, 2021, 420: 127722. doi: 10.1016/j.cej.2020.127722
|