[1] BOUAÏCHA N, MILES C O, BEACH D G, et al. Structural diversity, characterization and toxicology of microcystins [J]. Toxins, 2019, 11(12): 714. doi: 10.3390/toxins11120714
[2] BURATTI F M, MANGANELLI M, VICHI S, et al. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation [J]. Archives of Toxicology, 2017, 91(3): 1049-1130. doi: 10.1007/s00204-016-1913-6
[3] 苏雅玲, 邓一荣. 富营养化湖泊中微囊藻毒素及其控制去除技术 [J]. 环境科学与技术, 2013, 36(6): 62-66,84. doi: 10.3969/j.issn.1003-6504.2013.06.013 SU Y L, DENG Y R. Microcystins in eutrophic lakes and their controlling and removing methods [J]. Environmental Science & Technology, 2013, 36(6): 62-66,84(in Chinese). doi: 10.3969/j.issn.1003-6504.2013.06.013
[4] 王东伟. 水环境中微囊藻毒素去除方法的研究进展 [J]. 黑龙江环境通报, 2019, 43(1): 40-43. WANG D W. Advances in removal of microcystins from water environmen [J]. Heilongjiang Environmental Journal, 2019, 43(1): 40-43(in Chinese).
[5] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071
[6] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review [J]. Journal of Cleaner Production, 2019, 227: 1002-1022. doi: 10.1016/j.jclepro.2019.04.282
[7] 崔孝强. 水体修复植物基生物炭的环境应用及其机理研究[D]. 杭州: 浙江大学, 2018. CUI X Q. The environmental applications and corresponding mechanisms of biochar derived from aquatic eco-remediation plants[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
[8] 汪琪, 黄蔚, 吴涛, 等. 大型水生植物腐烂分解过程探讨 [J]. 绿色科技, 2020(18): 1-3. doi: 10.3969/j.issn.1674-9944.2020.18.002 WANG Q, HUANG W, WU T, et al. Discussion on the decomposition process of macrophyte [J]. Journal of Green Science and Technology, 2020(18): 1-3(in Chinese). doi: 10.3969/j.issn.1674-9944.2020.18.002
[9] WANG X Q, GUO Z Z, HU Z, et al. Recent advances in biochar application for water and wastewater treatment: A review [J]. PeerJ, 2020, 8: e9164. doi: 10.7717/peerj.9164
[10] SIZMUR T, FRESNO T, AKGÜL G, et al. Biochar modification to enhance sorption of inorganics from water [J]. Bioresource Technology, 2017, 246: 34-47. doi: 10.1016/j.biortech.2017.07.082
[11] CHEN Q C, QIN J L, CHENG Z W, et al. Synthesis of a stable magnesium-impregnated biochar and its reduction of phosphorus leaching from soil [J]. Chemosphere, 2018, 199: 402-408. doi: 10.1016/j.chemosphere.2018.02.058
[12] SHANG H R, LI Y X, LIU J Y, et al. Preparation of nitrogen doped magnesium oxide modified biochar and its sorption efficiency of lead ions in aqueous solution [J]. Bioresource Technology, 2020, 314: 123708. doi: 10.1016/j.biortech.2020.123708
[13] JIANG Y H, LI A Y, DENG H, et al. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks [J]. Bioresource Technology, 2019, 276: 183-189. doi: 10.1016/j.biortech.2018.12.079
[14] NJUGUNA J K O, 张荣斌, 李远, 等. 镁盐改性生物质炭的合成及其在废水氮磷资源化中的应用研究 [J]. 环境科学学报, 2018, 38(11): 4383-4390. doi: 10.13671/j.hjkxxb.2018.0233 NJUGUNA J K O, ZHANG R B, LI Y, et al. Synthesis and characterization of magnesium modified biochar for ammonia and phosphorus immobilization from simulated wastewater [J]. Acta Scientiae Circumstantiae, 2018, 38(11): 4383-4390(in Chinese). doi: 10.13671/j.hjkxxb.2018.0233
[15] TAO Q, LI B, LI Q Q, et al. Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata [J]. Science of the Total Environment, 2019, 659: 1448-1456. doi: 10.1016/j.scitotenv.2018.12.361
[16] 朱赫特, 郭雅欣, 陈晓, 等. 磷酸改性水生植物生物炭吸附微囊藻毒素-LR及其影响因素 [J]. 环境科学学报, 2021, 41(5): 1878-1890. doi: 10.13671/j.hjkxxb.2020.0441 ZHU H T, GUO Y X, CHEN X, et al. Adsorption of microcystin-LR by phosphoric acid modified aquatic plant biochar and its influencing factors [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1878-1890(in Chinese). doi: 10.13671/j.hjkxxb.2020.0441
[17] YANG Y, CHUN Y, SHENG G, et al. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon [J]. Langmuir, 2004, 20(16): 6736-6741. doi: 10.1021/la049363t
[18] UCHIMIYA M, WARTELLE L H, KLASSON K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil [J]. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2501-2510. doi: 10.1021/jf104206c
[19] NHAM N T, TAHTAMOUNI T M A, NGUYEN T D, et al. Synthesis of iron modified rice straw biochar toward arsenic from groundwater [J]. Materials Research Express, 2019, 6(11): 115528. doi: 10.1088/2053-1591/ab4b98
[20] LI R H, WANG J J, ZHOU B Y, et al. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment [J]. Journal of Cleaner Production, 2017, 147: 96-107. doi: 10.1016/j.jclepro.2017.01.069
[21] XU Z, CHEN T, DING Z H, et al. Effects of magnesium impregnation on stability and sorption performance of biochar derived from sawdust and corn husks [J]. BioResources, 2018, 14(1): 289-301. doi: 10.15376/biores.14.1.289-301
[22] ZHANG J Q, HU X L, YAN J P, et al. Crayfish shell biochar modified with magnesium chloride and its effect on lead removal in aqueous solution [J]. Environmental Science and Pollution Research International, 2020, 27(9): 9582-9588. doi: 10.1007/s11356-020-07631-9
[23] AL-WABEL M I, AL-OMRAN A, EL-NAGGAR A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from Conocarpus wastes [J]. Bioresource Technology, 2013, 131: 374-379. doi: 10.1016/j.biortech.2012.12.165
[24] 孟庆瑞, 崔心红, 朱义, 等. 载氧化镁水生植物生物炭的特性表征及对水中磷的吸附 [J]. 环境科学学报, 2017, 37(8): 2960-2967. doi: 10.13671/j.hjkxxb.2017.0075 MENG Q R, CUI X H, ZHU Y, et al. Characterization of MgO-loaded aquatic plants biochar and its adsorption capacity of phosphorus in aqueous solution [J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2960-2967(in Chinese). doi: 10.13671/j.hjkxxb.2017.0075
[25] PUZIY A M, PODDUBNAYA O I, MARTı́NEZ-ALONSO A, et al. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties [J]. Carbon, 2002, 40(9): 1493-1505. doi: 10.1016/S0008-6223(01)00317-7
[26] 申红艳, 刘有智. 纳米氢氧化镁的制备及其原位改性 [J]. 化工进展, 2017, 36(1): 294-298. doi: 10.16085/j.issn.1000-6613.2017.01.037 SHEN H Y, LIU Y Z. Preparation and in situ modification of magnesium hydroxide nanoparticles [J]. Chemical Industry and Engineering Progress, 2017, 36(1): 294-298(in Chinese). doi: 10.16085/j.issn.1000-6613.2017.01.037
[27] 富丽, 徐先英, 付贵全, 等. 五种生物质炭的特性分析 [J]. 干旱区资源与环境, 2019, 33(9): 202-208. doi: 10.13448/j.cnki.jalre.2019.257 FU L, XU X Y, FU G Q, et al. Characteristic analysis of five biochars [J]. Journal of Arid Land Resources and Environment, 2019, 33(9): 202-208(in Chinese). doi: 10.13448/j.cnki.jalre.2019.257
[28] AHMED M J, HAMEED B H. Adsorption behavior of salicylic acid on biochar as derived from the thermal pyrolysis of barley straws [J]. Journal of Cleaner Production, 2018, 195: 1162-1169. doi: 10.1016/j.jclepro.2018.05.257
[29] 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010. WENG S F. Fourier transform infrared spectroscopy analysis[M]. 2nd edition. Beijing: Chemical Industry Press, 2010(in Chinese).
[30] 吕擎峰, 何俊峰, 王子帅, 等. 黏土矿物与碱激发地聚物的相互作用机理 [J]. 工程地质学报, 2020, 28(6): 1205-1212. doi: 10.13544/j.cnki.jeg.2019-547 LÜ Q F, HE J F, WANG Z S, et al. Study on interaction mechanism between clay minerals and alkali activated geopolymers [J]. Journal of Engineering Geology, 2020, 28(6): 1205-1212(in Chinese). doi: 10.13544/j.cnki.jeg.2019-547
[31] 刘国良, 朱一民, 房鑫, 等. 不同粒度纳米氧化镁的制备及其红外吸收特性 [J]. 东北大学学报(自然科学版), 2010, 31(8): 1192-1195. doi: 10.3969/j.issn.1005-3026.2010.08.032 LIU G L, ZHU Y M, FANG X, et al. Preparation of MgO with different nanoparticle sizes and their infrared wave absorptivities [J]. Journal of Northeastern University (Natural Science), 2010, 31(8): 1192-1195(in Chinese). doi: 10.3969/j.issn.1005-3026.2010.08.032
[32] CHEN X L, YU J, GUO S Y, et al. Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites [J]. Journal of Materials Science, 2009, 44(5): 1324-1332. doi: 10.1007/s10853-009-3273-6
[33] YOUSEFI S, GHASEMI B, TAJALLY M, et al. Optical properties of MgO and Mg(OH)2 nanostructures synthesized by a chemical precipitation method using impure brine [J]. Journal of Alloys and Compounds, 2017, 711: 521-529. doi: 10.1016/j.jallcom.2017.04.036
[34] LI Y R, ZHANG J, LIU H. Removal of chloramphenicol from aqueous solution using low-cost activated carbon prepared from Typha orientalis [J]. Water, 2018, 10(4): 351. doi: 10.3390/w10040351
[35] JING X R, WANG Y Y, LIU W J, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar [J]. Chemical Engineering Journal, 2014, 248: 168-174. doi: 10.1016/j.cej.2014.03.006
[36] FAN Y, WANG B, YUAN S H, et al. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal [J]. Bioresource Technology, 2010, 101(19): 7661-7664. doi: 10.1016/j.biortech.2010.04.046
[37] LI J M, CAO L R, YUAN Y, et al. Comparative study for microcystin-LR sorption onto biochars produced from various plant- and animal-wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties [J]. Bioresource Technology, 2018, 247: 794-803. doi: 10.1016/j.biortech.2017.09.120
[38] NIST. Magnesium Hydroxide - NIST XPS Database Detail Page[EB/OL]. (2012-09-15)[2021-02-10].
[39] NIST. Magnesium Oxide - NIST XPS Database Detail Page[EB/OL]. (2012-09-15)[2021-02-10].
[40] YAO Y, GAO B, CHEN J J, et al. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential [J]. Bioresource Technology, 2013, 138: 8-13. doi: 10.1016/j.biortech.2013.03.057
[41] 张世芝, 吴丽娃, 程振民. 硅藻土零电荷点及吸附行为分析 [J]. 重庆理工大学学报(自然科学), 2012, 26(2): 35-39. ZHANG S Z, WU L W, CHENG Z M. Study on point of zero charge and adsorption of the diatomite [J]. Journal of Chongqing University of Technology (Natural Science), 2012, 26(2): 35-39(in Chinese).
[42] ABBAS Z, ALI S, RIZWAN M, et al. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar [J]. Arabian Journal of Geosciences, 2018, 11(16): 448. doi: 10.1007/s12517-018-3790-1
[43] de MAAGD P G J, HENDRIKS A J, SEINEN W, et al. pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR [J]. Water Research, 1999, 33(3): 677-680. doi: 10.1016/S0043-1354(98)00258-9
[44] KOSMULSKI M. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks' review [J]. Advances in Colloid and Interface Science, 2016, 238: 1-61. doi: 10.1016/j.cis.2016.10.005
[45] PENDLETON P, SCHUMANN R, WONG S H. Microcystin-LR adsorption by activated carbon [J]. Journal of Colloid and Interface Science, 2001, 240(1): 1-8. doi: 10.1006/jcis.2001.7616
[46] LIU B L, FU M M, XIANG L, et al. Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms [J]. Science of the Total Environment, 2021, 763: 143028. doi: 10.1016/j.scitotenv.2020.143028
[47] LI F, SHEN K X, LONG X L, et al. Preparation and characterization of biochars from eichornia crassipes for cadmium removal in aqueous solutions [J]. PLoS One, 2016, 11(2): e0148132. doi: 10.1371/journal.pone.0148132
[48] CHEN T W, LUO L, DENG S H, et al. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure [J]. Bioresource Technology, 2018, 267: 431-437. doi: 10.1016/j.biortech.2018.07.074
[49] HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material [J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755
[50] HO Y S, MCKAY G. Pseudo-second order model for sorption processes [J]. Process Biochemistry, 1999, 34(5): 451-465. doi: 10.1016/S0032-9592(98)00112-5
[51] 李旭, 季宏兵, 张言, 等. 不同制备温度下水生植物生物炭吸附Cd2+研究 [J]. 水处理技术, 2019, 45(9): 68-73,77. LI X, JI H B, ZHANG Y, et al. Adsorption characteristics and mechanism of Cd2+ on biochar with different pyrolysis temperatures produced from hydrophyte [J]. Technology of Water Treatment, 2019, 45(9): 68-73,77(in Chinese).
[52] HAMEED B H, TAN I A W, AHMAD A L. Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon [J]. Chemical Engineering Journal, 2008, 144(2): 235-244. doi: 10.1016/j.cej.2008.01.028
[53] JANG H M, YOO S, PARK S, et al. Engineered biochar from pine wood: Characterization and potential application for removal of sulfamethoxazole in water [J]. Environmental Engineering Research, 2019, 24(4): 608-617.
[54] MA Y F, LI P, YANG L, et al. Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110550. doi: 10.1016/j.ecoenv.2020.110550
[55] MAHDI Z, EL HANANDEH A, YU Q J. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103379. doi: 10.1016/j.jece.2019.103379
[56] ZAZYCKI M A, GODINHO M, PERONDI D, et al. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions [J]. Journal of Cleaner Production, 2018, 171: 57-65. doi: 10.1016/j.jclepro.2017.10.007
[57] LI Y G, LI Q Q, WU C X, et al. The inappropriate application of the regression Langmuir Qm for adsorption capacity comparison [J]. Science of the Total Environment, 2020, 699: 134222. doi: 10.1016/j.scitotenv.2019.134222
[58] HARADA K I, TSUJI K, WATANABE M F, et al. Stability of microcystins from cyanobacteria—III. effect of pH and temperature [J]. Phycologia, 1996, 35(sup6): 83-88. doi: 10.2216/i0031-8884-35-6S-83.1
[59] GONÇALVES M G, da SILVA VEIGA P A, FORNARI M R, et al. Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange [J]. Science of the Total Environment, 2020, 748: 141381. doi: 10.1016/j.scitotenv.2020.141381
[60] HUANG W J, CHENG B L, CHENG Y L. Adsorption of microcystin-LR by three types of activated carbon [J]. Journal of Hazardous Materials, 2007, 141(1): 115-122. doi: 10.1016/j.jhazmat.2006.06.122
[61] XIAO X Y, LI F L, HUANG J X, et al. Reduced adsorption of propanil to black carbon: Effect of dissolved organic matter loading mode and molecule size [J]. Environmental Toxicology and Chemistry, 2012, 31(6): 1187-1193. doi: 10.1002/etc.1800
[62] QIU Y P, XIAO X Y, CHENG H Y, et al. Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter [J]. Environmental Science & Technology, 2009, 43(13): 4973-4978.
[63] CAMPINAS M, VIEGAS R M C, ROSA M J. Modelling and understanding the competitive adsorption of microcystins and tannic acid [J]. Water Research, 2013, 47(15): 5690-5699. doi: 10.1016/j.watres.2013.06.048