[1] |
GIL-CARDEZA M L, FERRI A, CORNEJO P, et al. Distribution of chromium species in a Cr-polluted soil: Presence of Cr(III) in glomalin related protein fraction[J]. Science of the Total Environment, 2014, 493: 828-33. doi: 10.1016/j.scitotenv.2014.06.080
|
[2] |
CONG Y Q, SHEN L D, WANG B M, et al. Efficient removal of Cr(VI) at alkaline pHs by sulfite/iodide/UV: Mechanism and modeling[J]. Water Research, 2022, 222: 118919. doi: 10.1016/j.watres.2022.118919
|
[3] |
DONG H Y, WEI G F, CAO T C, et al. Insights into the oxidation of organic cocontaminants during Cr(VI) reduction by sulfite: The overlooked significance of Cr(V)[J]. Environmental Science & Technology, 2020, 54(2): 1157-1166.
|
[4] |
HAIGHT G P, PERCHONOCK E, EMMENEGGER F, et al. The mechanism of the oxidation of sulfur(IV) by chromium in acid solution[J]. Journal of the American Chemical Society, 1965, 87: 3835-3840. doi: 10.1021/ja01095a009
|
[5] |
BRANDT C, ELDING L I. Role of chromium and vanadium in the atmospheric oxidation of sulfur(IV)[J]. Atmospheric Environment, 1998, 32: 797-800. doi: 10.1016/S1352-2310(97)00331-2
|
[6] |
JIANG B, LIU Y K, ZHENG J T, et al. Synergetic transformations of multiple pollutants driven by Cr(VI)-sulfite reactions[J]. Environmental Science & Technology, 2015, 49(20): 12363-71.
|
[7] |
YUAN Y N, YANG S J, ZHOU D N, et al. A simple Cr(VI)-S(IV)-O2 system for rapid and simultaneous reduction of Cr(VI) and oxidative degradation of organic pollutants[J]. Journal of Hazardous Materials, 2016, 307: 294-301. doi: 10.1016/j.jhazmat.2016.01.012
|
[8] |
DONG H Y, WEI G F, FAN W J, et al. Reinvestigating the role of reactive species in the oxidation of organic co-contaminants during Cr(VI) reactions with sulfite[J]. Chemosphere, 2018, 196: 593-597. doi: 10.1016/j.chemosphere.2017.12.194
|
[9] |
BUXTON G V, MCGOWAN S, SALMON G A, et al. A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and γ-radiolysis study[J]. Atmospheric Environment, 1996, 30: 2483-2493. doi: 10.1016/1352-2310(95)00473-4
|
[10] |
WARNECK P, ZIAJKA J. Reaction mechanism of the iron(III)-catalyzed autoxidation of bisulfite in aqueous solution: Steady state description for benzene as radical scavenger[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1995, 99: 59-65.
|
[11] |
ZHANG J M, MA J, SONG H R, et al. Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process[J]. Water Research, 2018, 133: 227-235. doi: 10.1016/j.watres.2018.01.039
|
[12] |
DAS T N. Reactivity and role of SO5•– radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation[J]. Journal of Physical Chemistry A, 2001, 105: 9142-9155. doi: 10.1021/jp011255h
|
[13] |
ZHANG Y, YANG W, ZHANG K K, et al. Sulfite activation by glucose-derived carbon catalysts for As(III) oxidation: The role of ketonic functional groups and conductivity[J]. Environmental Science & Technology, 2021, 55(17): 11961-11969.
|
[14] |
WANG Z H, MA W H, CHEN C C, et al. Photochemical coupling reactions between Fe(III)/Fe(II), Cr(VI)/Cr(III), and polycarboxylates: Inhibitory effect of Cr species[J]. Environmental Science & Technology, 2008, 42(19): 7260-7266.
|
[15] |
KRISHNAMURTY K V. , HARRIS G M. The chemistry of the metal oxalato complexes[J]. Chemical Reviews, 1961, 61(3): 213-246. doi: 10.1021/cr60211a001
|
[16] |
JIANG B, WANG X L, LIU Y K, et al. The roles of polycarboxylates in Cr(VI)/sulfite reaction system: Involvement of reactive oxygen species and intramolecular electron transfer[J]. Journal of Hazardous Materials, 2016, 304: 457-66. doi: 10.1016/j.jhazmat.2015.11.011
|
[17] |
LI N, MA X L, ZHA Q F, et al. Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry[J]. Carbon, 2011, 49(15): 5002-5013. doi: 10.1016/j.carbon.2011.07.015
|
[18] |
GOSCIANSKA J, OLEJNIK A, NOWAK I, et al. Stability analysis of functionalized mesoporous carbon materials in aqueous solution[J]. Chemical Engineering Journal, 2016, 290: 209-219. doi: 10.1016/j.cej.2016.01.060
|
[19] |
GAN G Q, FAN S Y, LI X Y, et al. Effects of oxygen functional groups on electrochemical performance of carbon materials for dechlorination of 1, 2-dichloroethane to ethylene[J]. Chemical Engineering Journal, 2022, 434: 134547. doi: 10.1016/j.cej.2022.134547
|
[20] |
REN Y, YUAN Z L, LV K, et al. Selective and metal-free oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran over nitrogen-doped carbon materials[J]. Green Chemistry, 2018, 20(21): 4946-4956. doi: 10.1039/C8GC02286K
|
[21] |
ZHANG K K, SUN P, FAYE M C A S, et al. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation[J]. Carbon, 2018, 130: 730-740. doi: 10.1016/j.carbon.2018.01.036
|
[22] |
ZHANG K K, KHAN A, SUN P, et al. Simultaneous reduction of Cr(VI) and oxidization of organic pollutants by rice husk derived biochar and the interactive influences of coexisting Cr(VI)[J]. Science of the Total Environment, 2020, 706: 135763. doi: 10.1016/j.scitotenv.2019.135763
|
[23] |
GU Y, LI H X, LIU L X, et al. Constructing CNTs-based composite membranes for oil/water emulsion separation via radiation-induced “grafting to” strategy[J]. Carbon, 2021, 178: 678-687. doi: 10.1016/j.carbon.2021.03.051
|
[24] |
LIU Y J. Simultaneous oxidation of phenol and reduction of Cr(VI) induced by contact glow discharge electrolysis[J]. Journal of Hazardous Materials, 2009, 168(2/3): 992-6.
|
[25] |
LUO T, PENG Y, CHEN L, et al. Metal-free electro-activated sulfite process for As(III) oxidation in water using graphite electrodes[J]. Environmental Science & Technology, 2020, 54(16): 10261-10269.
|
[26] |
KHAN A, WANG H B, LIU Y, et al. Highly efficient α-Mn2O3@α-MnO2-500 nanocomposite for peroxymonosulfate activation: comprehensive investigation of manganese oxides[J]. Journal of Materials Chemistry A, 2018, 6(4): 1590-1600. doi: 10.1039/C7TA07942G
|
[27] |
GHOSH M C, GELERINTER E, GOULD E S. Electron Transfer. 111. Disproportionation of carboxylato-bound chromium(IV). Catalysis by Manganese(II)[J]. American Chemical Society, 1992, 31: 702-705.
|
[28] |
JIANG B, HE H H, LIU Y J, et al. pH-dependent roles of polycarboxylates in electron transfer between Cr(VI) and weak electron donors[J]. Chemosphere, 2018, 197: 367-374. doi: 10.1016/j.chemosphere.2018.01.047
|
[29] |
ZHANG K K, SUN P, ZHANG Y, et al. Enhancement of S(IV)-Cr(VI) reaction in p-nitrophenol degradation using rice husk biochar at neutral conditions[J]. Science of the Total Environment, 2020, 749: 142086. doi: 10.1016/j.scitotenv.2020.142086
|
[30] |
HUBER C F, HAIGHT G P. The oxidation of manganese(II) by chromium(VI) in the presence of oxalate ion[J]. Journal of the American Chemical Society, 1976, 98(14): 4128-4131. doi: 10.1021/ja00430a019
|
[31] |
JOHNSTON C P, CHRYSOCHOOU M. Mechanisms of chromate adsorption on hematite[J]. Geochimica et Cosmochimica Acta, 2014, 138: 146-157. doi: 10.1016/j.gca.2014.04.030
|
[32] |
HU P D, SU H R, CHEN Z Y, et al. Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation[J]. Environmental Science & Technology, 2017, 51(19): 11288-11296.
|
[33] |
CHOPPALA G, BOLAN N, KUNHIKRISHNAN A, et al. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere, 2016, 144: 374-81. doi: 10.1016/j.chemosphere.2015.08.043
|
[34] |
SUMARAJ, XIONG Z X, SARMAH A K, et al. Acidic surface functional groups control chemisorption of ammonium onto carbon materials in aqueous media[J]. Science of the Total Environment, 2020, 698: 134193. doi: 10.1016/j.scitotenv.2019.134193
|