[1] 黄乃先, 齐一凡, 金伟. 排水管道沉积物控制的研究进展[J]. 环境工程技术学报, 2021, 11(3): 507-513. doi: 10.12153/j.issn.1674-991X.20210017
[2] 王嘉仪, 潘丽, 来志强. 郑州市排水管道沉积物现状及特性分析[C]. 中国水利学会、黄河水利委员会, 2020: 393-397.
[3] 董梅, 胡晔, 杨洋, 等. 关于排水管道沉积物控制及水力清淤的思路[J]. 市政技术, 2018, 36(6): 113-115.
[4] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
[5] 徐友, 陈思思, 董滨, 等. 酶处理强化污泥厌氧消化效能及脱水性能的研究进展[J]. 工业水处理, 2018, 38(3): 6-11.
[6] 赵春红, 王娟. 酶制剂在水环境保护方面的研究进展[J]. 山东化工, 2019, 48(8): 61-64.
[7] 罗璐, 施周, 许仕荣, 等. 溶菌酶预处理对剩余污泥脱水性能的影响[J]. 中国给水排水, 2022, 38(3): 87-91. doi: 10.19853/j.zgjsps.1000-4602.2022.03.014
[8] 宋勇. 水解酶对活性污泥系统的污泥减量研究[D]. 长沙: 湖南大学, 2016.
[9] ZOU X, HE J, ZHANG P, et al. Insights into carbon recovery from excess sludge through enzyme-catalyzing hydrolysis strategy: Environmental benefits and carbon-emission reduction[J]. Bioresource Technology, 2022, 351: 127006. doi: 10.1016/j.biortech.2022.127006
[10] 李玉龙, 曹海军, 纪豪, 等. 双酶协同水解剩余污泥条件优化[J]. 环境工程学报, 2016, 10(11): 6649-6654.
[11] 薛飞, 陈钦, 许士洪, 等. 超声与溶菌酶协同强化印染污泥溶胞效果研究[J]. 应用化工, 2020, 49(8): 1933-1937.
[12] 张帆, 程路峰, 曹红, 等. 基于酶反应动力学理论优化脂肪酶活力测定体系[J]. 中国油脂, 2022: 1-12.
[13] 陈小粉, 李小明, 杨麒, 等. 淀粉酶促进剩余污泥热水解的研究[J]. 中国环境科学, 2011, 31(3): 396-401.
[14] 李超, 高健磊, 闫怡新, 等. 中性蛋白酶催化水解污泥提取蛋白质的研究[J]. 能源环境保护, 2019, 33(6): 18-22.
[15] 罗琨. 外加水解酶强化剩余污泥水解和酸化的研究[D]. 长沙: 湖南大学, 2013.
[16] 史贺, 华飞果, 李鸿凯, 等. 纤维素酶预处理漂白针叶木浆的工艺优化研究[J]. 中国造纸学报, 2022, 37(S1): 1-12.
[17] 韦新东, 刘丞轩, 崔玉波, 等. 超声与碱对污泥水解酸化效率的研究[J]. 吉林建筑大学学报, 2022, 39(3): 52-56.
[18] 苏高强, 彭永臻, 汪传新, 等. 污泥类型对污泥碱性发酵的影响[J]. 化工学报, 2011, 62(12): 3492-3497. doi: 10.3969/j.issn.0438-1157.2011.12.028
[19] 张婧伟, 白周央, 杨树成. 超声-碱预处理以促进污泥水解效率的研究进展[J]. 工业水处理, 2020, 40(4): 12-17.
[20] LI W, ZHENG T, MA Y, et al. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019, 695: 133815. doi: 10.1016/j.scitotenv.2019.133815
[21] MENG D, WU J, CHEN K, et al. Effects of extracellular polymeric substances and microbial community on the anti-scouribility of sewer sediment[J]. Science of the Total Environment, 2019, 687: 494-504. doi: 10.1016/j.scitotenv.2019.05.387
[22] 陈翠忠, 李俊峰, 蓝明菊, 等. 碳氮比对SBR系统硝化过程及EPS三维荧光光谱特性的影响[J]. 化工进展, 2020, 39(12): 5275-5282.
[23] MENG F, ZHAO Q, ZHENG Z, et al. Simultaneous sludge degradation, desalination and bioelectricity generation in two-phase microbial desalination cells[J]. Chemical Engineering Journal, 2019, 361: 180-188. doi: 10.1016/j.cej.2018.12.063
[24] XU H, SHEN K, DING T, et al. Dewatering of drinking water treatment sludge using the Fenton-like process induced by electro-osmosis[J]. Chemical Engineering Journal, 2016, 293: 207-215. doi: 10.1016/j.cej.2016.02.025
[25] GUO X, QIAN X, WANG Y, et al. Magnetic micro-particle conditioning–pressurized vertical electro-osmotic dewatering (MPEOD) of activated sludge: Role and behavior of moisture and organics[J]. Journal of Environmental Sciences, 2018, 74: 147-158. doi: 10.1016/j.jes.2018.02.020