[1] GILL J P K, SETHI N, MOHAN A, et al. Glyphosate toxicity for animals[J]. Environmental Chemistry Letters, 2017, 16(2): 401-426.
[2] 孟秀柔, 宋青梅, 王飞, 等. 草铵膦和草甘膦在水环境中的行为和毒性效应研究进展[J]. 生态毒理学报, 2021, 16(3): 144-154.
[3] ESPINOZA-MONTERO P J, VEGA-VERDUGA C, ALULEMA-PULLUPAXI P, et al. Technologies Employed in the Treatment of Water Contaminated with Glyphosate: A Review[J]. Molecules, 2020, 25(23): 5550-5576. doi: 10.3390/molecules25235550
[4] BONANSEA R I, FILIPPI I, WUNDERLIN D A, et al. The Fate of Glyphosate and AMPA in a Freshwater Endorheic Basin: An Ecotoxicological Risk Assessment[J]. Toxics, 2017, 6(1): 3-16. doi: 10.3390/toxics6010003
[5] VILLAMAR-AYALA C A, CARRERA-CEVALLOS J V, VASQUEZ-MEDRANO R, et al. Fate, eco-toxicological characteristics, and treatment processes applied to water polluted with glyphosate: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(16): 1476-1514. doi: 10.1080/10643389.2019.1579627
[6] BATTAGLIN W A, MEYER M T, KUIVILA K M, et al. Glyphosate and Its Degradation Product AMPA Occur Frequently and Widely in U. S. Soils, Surface Water, Groundwater, and Precipitation[J]. JAWRA Journal of the American Water Resources Association, 2014, 50(2): 275-290. doi: 10.1111/jawr.12159
[7] RUIZ-TOLEDO J, CASTRO R, RIVERO-PEREZ N, et al. Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(3): 289-293. doi: 10.1007/s00128-014-1328-0
[8] JIANG N, SHANG R, HEIJMAN S G J, et al. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review[J]. Water Res, 2018, 144: 145-161. doi: 10.1016/j.watres.2018.07.017
[9] ABBAS M N. Phosphorus removal from wastewater using rice husk and subsequent utilization of the waste residue[J]. Desalination and Water Treatment, 2014, 55(4): 970-977.
[10] OLADOJA N A, ADELAGUN R O A, AHMAD A L, et al. Phosphorus recovery from aquaculture wastewater using thermally treated gastropod shell[J]. Process Safety and Environmental Protection, 2015, 98: 296-308. doi: 10.1016/j.psep.2015.09.006
[11] 水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363. doi: 10.16085/j.issn.1000-6613.2021-0756
[12] 王家恒, 宫长伟, 付现凯, 等. TiO2光催化剂的掺杂改性及应用研究进展[J]. 化工新型材料, 2016, 44(1): 15-18.
[13] MAARISETTY D, BARAL S S. Defect-induced enhanced dissociative adsorption, optoelectronic properties and interfacial contact in Ce doped TiO2: Solar photocatalytic degradation of Rhodamine B[J]. Ceramics International, 2019, 45(17): 22253-22263. doi: 10.1016/j.ceramint.2019.07.251
[14] ALIPANAHPOUR DIL E, GHAEDI M, ASFARAM A, et al. Synthesis and application of Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of Basic Red 46 dye[J]. Ultrason Sonochem, 2019, 58: 104702. doi: 10.1016/j.ultsonch.2019.104702
[15] MAKDEE A, UNWISET P, CHAYAKUL CHANAPATTHARAPOL K, et al. Effects of Ce addition on the properties and photocatalytic activity of TiO2, investigated by X-ray absorption spectroscopy[J]. Materials Chemistry and Physics, 2018, 213: 431-443. doi: 10.1016/j.matchemphys.2018.04.016
[16] 赵文霞, 刘帅, 王蕊, 等. 煅烧氛围对N-TiO2可见光催化性能的影响[J]. 环境工程学报, 2019, 13(12): 2907-2914.
[17] JIN C-Z, YANG Y, YANG X-A, et al. Visible photocatalysis of Cr(VI) at g/L level in Si/N-TiO2 nanocrystals synthesized by one-step co-hydrolysis method[J]. Chemical Engineering Journal, 2020, 398: 125641. doi: 10.1016/j.cej.2020.125641
[18] SHAARI N, TAN S H, MOHAMED A R. Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation[J]. Journal of Rare Earths, 2012, 30(7): 651-658. doi: 10.1016/S1002-0721(12)60107-0
[19] MENG Z, WAN L, ZHANG L, et al. One-step fabrication of Ce–N-codoped TiO2 nano-particle and its enhanced visible light photocatalytic performance and mechanism[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4102-4107. doi: 10.1016/j.jiec.2013.12.111
[20] NASIR M, BAGWASI S, JIAO Y, et al. Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method[J]. Chemical Engineering Journal, 2014, 236: 388-397. doi: 10.1016/j.cej.2013.09.095
[21] SINGARAM B, VARADHARAJAN K, JEYARAM J, et al. Preparation of cerium and sulfur codoped TiO2 nanoparticles based photocatalytic activity with enhanced visible light[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 349: 91-99. doi: 10.1016/j.jphotochem.2017.09.003
[22] SENTHILNATHAN J, PHILIP L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2[J]. Chemical Engineering Journal, 2010, 161(1/2): 83-92.
[23] CHEN Y, LIU K. Fabrication of Ce/N co-doped TiO2/diatomite granule catalyst and its improved visible-light-driven photoactivity[J]. J Hazard Mater, 2017, 324(Pt B): 139-150.
[24] BIAN Z, FENG Y, LI H, et al. Adsorption-photocatalytic degradation and kinetic of sodium isobutyl xanthate using the nitrogen and cerium co-doping TiO2-coated activated carbon[J]. Chemosphere, 2021, 263: 128254. doi: 10.1016/j.chemosphere.2020.128254
[25] ERAIAH R K, MADRAS G. Metal–metal charge transfer and interfacial charge transfer mechanism for the visible light photocatalytic activity of cerium and nitrogen co-doped TiO2[J]. Journal of Sol-Gel Science and Technology, 2014, 71(2): 193-203. doi: 10.1007/s10971-014-3350-4
[26] BURROUGHS P, HAMNETT A, ORCHARD A F, et al. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium[J]. Journal of the Chemical Society, Dalton Transactions, 1976, 1(17): 1686-1698.
[27] XUE G, LIU H, CHEN Q, et al. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites[J]. J Hazard Mater, 2011, 186(1): 765-772. doi: 10.1016/j.jhazmat.2010.11.063
[28] LUO Y, WEI X, GAO B, et al. Synergistic adsorption-photocatalysis processes of graphitic carbon nitrate (g-C3N4) for contaminant removal: Kinetics, models, and mechanisms[J]. Chemical Engineering Journal, 2019, 375: 122019. doi: 10.1016/j.cej.2019.122019
[29] 张伟, 梁哲, 汪爱河, 等. 改性牡蛎壳粉优化制备及其对草甘膦的吸附性能[J]. 工业水处理, 2022, 42(03): 90-97. doi: 10.19965/j.cnki.iwt.2021-0670
[30] LIN L, ZHANG X, XIAO G, et al. Photocatalytic Degradation Glyphosate with Cerium and Nitrogen Co-Doped TiO2 under Visible Irradiation[J]. Advanced Materials Research, 2012, 430-432: 1048-1051. doi: 10.4028/www.scientific.net/AMR.430-432.1048
[31] RAJORIYA S, BARGOLE S, GEORGE S, et al. Synthesis and characterization of samarium and nitrogen doped TiO2 photocatalysts for photo-degradation of 4-acetamidophenol in combination with hydrodynamic and acoustic cavitation[J]. Separation and Purification Technology, 2019, 209: 254-269. doi: 10.1016/j.seppur.2018.07.036
[32] HERRMANN J M. Photocatalysis fundamentals revisited to avoid several misconceptions[J]. Applied Catalysis B:Environmental, 2010, 99(3/4): 461-468.
[33] 万燕, 魏任星, 卢挺, 等. 二氧化钛多相光催化降解有机污染物影响因素研究进展[J]. 现代化工, 2018, 38(5): 53-56. doi: 10.16606/j.cnki.issn0253-4320.2018.05.012