[1] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317
[2] ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? [J]. Chemical Reviews, 2016, 116(12): 7159-7329. doi: 10.1021/acs.chemrev.6b00075
[3] HE D H, ZHANG C, ZENG G M, et al. A multifunctional platform by controlling of carbon nitride in the core-shell structure: From design to construction, and catalysis applications [J]. Applied Catalysis B:Environmental, 2019, 258: 117957. doi: 10.1016/j.apcatb.2019.117957
[4] COOPER A I. Conjugated microporous polymers [J]. Advanced Materials, 2009, 21(12): 1291-1295. doi: 10.1002/adma.200801971
[5] LI Q, GUO J N, ZHU H, et al. Space-confined synthesis of ZIF-67 nanoparticles in hollow carbon nanospheres for CO2 adsorption [J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(8): e1804874. doi: 10.1002/smll.201804874
[6] HU J, CHEN M, FANG X S, et al. Fabrication and application of inorganic hollow spheres [J]. Chemical Society Reviews, 2011, 40(11): 5472-5491. doi: 10.1039/c1cs15103g
[7] LIU Z Y, BAI H W, SUN D. Facile fabrication of hierarchical porous TiO2 hollow microspheres with high photocatalytic activity for water purification [J]. Applied Catalysis B:Environmental, 2011, 104(3/4): 234-238.
[8] SUN J H, ZHANG J S, ZHANG M W, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles [J]. Nature Communications, 2012, 3: 1139. doi: 10.1038/ncomms2152
[9] LUO L, MA J N, ZHU H X, et al. Embedded carbon in a carbon nitride hollow sphere for enhanced charge separation and photocatalytic water splitting [J]. Nanoscale, 2020, 12(13): 7339-7346. doi: 10.1039/D0NR00226G
[10] NIU H J, CHEN H Y, WEN G L, et al. One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction [J]. Journal of Colloid and Interface Science, 2019, 539: 525-532. doi: 10.1016/j.jcis.2018.12.066
[11] CUI Y J, LI M, WANG H, et al. In-situ synthesis of sulfur doped carbon nitride microsphere for outstanding visible light photocatalytic Cr(Ⅵ) reduction [J]. Separation and Purification Technology, 2018, 199: 251-259. doi: 10.1016/j.seppur.2018.01.037
[12] LI M, ZHANG S B, LIU X, et al. Polydopamine and barbituric acid co-modified carbon nitride nanospheres for highly active and selective photocatalytic CO 2 reduction [J]. European Journal of Inorganic Chemistry, 2019, 2019(15): 2014. doi: 10.1002/ejic.201900366
[13] ZHANG J S, ZHANG M W, LIN S, et al. Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity [J]. Journal of Catalysis, 2014, 310: 24-30. doi: 10.1016/j.jcat.2013.01.008
[14] ZHANG Y L, REN C J, ZHANG Y F, et al. Improvement of photocatalytic activity of g-C3N4 by five-membered heterocyclic small molecule modifications: A theoretical prediction [J]. Applied Surface Science, 2019, 478: 119-127. doi: 10.1016/j.apsusc.2019.01.128
[15] WANG R R, YANG P J, WANG S B, et al. Regulating morphological and electronic structures of polymeric carbon nitrides by successive copolymerization and stream reforming for photocatalytic CO2 reduction [J]. Catalysis Science & Technology, 2021, 11(7): 2570-2576.
[16] CUI Y J, TANG Y B, WANG X C. Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants [J]. Materials Letters, 2015, 161: 197-200. doi: 10.1016/j.matlet.2015.08.106
[17] ZHANG F, ZHANG J H, WANG H F, et al. Single tungsten atom steered band-gap engineering for graphitic carbon nitride ultrathin nanosheets boosts visible-light photocatalytic H2 evolution [J]. Chemical Engineering Journal, 2021, 424: 130004. doi: 10.1016/j.cej.2021.130004
[18] ZHU Y X, CUI Y J, XIAO B B, et al. Z-scheme 2D/2D g-C3N4/Sn3O4 heterojunction for enhanced visible-light photocatalytic H2 evolution and degradation of ciprofloxacin [J]. Materials Science in Semiconductor Processing, 2021, 129: 105767. doi: 10.1016/j.mssp.2021.105767
[19] LIU S H, SONG X Z, LIU G C, et al. Synthesis of hollow donut-like carbon nitride for the visible light-driven highly efficient photocatalytic production of hydrogen and degradation of pollutants [J]. New Journal of Chemistry, 2020, 44(28): 12247-12255. doi: 10.1039/D0NJ02244F
[20] ZHU K, OU-YANG J, ZENG Q, et al. Fabrication of hierarchical ZnIn2S4@CNO nanosheets for photocatalytic hydrogen production and CO2 photoreduction [J]. Chinese Journal of Catalysis, 2020, 41(3): 454-463. doi: 10.1016/S1872-2067(19)63494-7
[21] XU X L, ASHER S A. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals [J]. Journal of the American Chemical Society, 2004, 126(25): 7940-7945. doi: 10.1021/ja049453k
[22] ZHENG D D, PANG C Y, LIU Y X, et al. Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution [J]. Chemical Communications, 2015, 51(47): 9706-9709. doi: 10.1039/C5CC03143E
[23] DEIFALLAH M, MCMILLAN P F, CORÀ F. Electronic and structural properties of two-dimensional carbon nitride graphenes [J]. The Journal of Physical Chemistry C, 2008, 112(14): 5447-5453. doi: 10.1021/jp711483t
[24] PRAKASH K, SELVAM V, BABU S G, et al. Rational design of novel 3D flower-like praseodymium molybdate anchored graphitic carbon Nitride: An efficient and sustainable photocatalyst for mitigation of carcinogenic pollutants [J]. Applied Surface Science, 2021, 569: 151104. doi: 10.1016/j.apsusc.2021.151104
[25] 郭桂全, 胡巧红, 王承林, 等. g-C3N4/RGO的制备、光催化降解性能及其降解机理 [J]. 环境化学, 2021, 40(3): 808-817. doi: 10.7524/j.issn.0254-6108.2019092605 GUO G Q, HU Q H, WANG C L, et al. Preparation, photocatalytic degradation performance and degradation mechanism of g-C3N4/RGO [J]. Environmental Chemistry, 2021, 40(3): 808-817(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092605
[26] KUMAR S, KAUSHIK R D, PUROHIT L P. ZnO-CdO nanocomposites incorporated with graphene oxide nanosheets for efficient photocatalytic degradation of bisphenol A, thymol blue and ciprofloxacin [J]. Journal of Hazardous Materials, 2022, 424: 127332. doi: 10.1016/j.jhazmat.2021.127332