[1] |
TAN J H, ZHANG L M, ZHOU X M, et al. Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China[J]. Science of the Total Environment, 2017, 601/602: 1743-1752. doi: 10.1016/j.scitotenv.2017.06.050
|
[2] |
董喆, 袁明浩, 苏方成, 等. 郑州市细颗粒物时空差异及管控措施影响[J]. 环境科学, 2021, 42(5): 2179-2189.
|
[3] |
裴坤宁, 高兴艾, 王淑敏, 等. 晋东南地区冬季 PM2.5 污染输送路径分析[J]. 中国环境科学, 2022, 42(2): 557-567.
|
[4] |
GAO J, WANG K, WANG Y, et al. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China[J]. Environmental Pollution, 2018, 233: 714-724. doi: 10.1016/j.envpol.2017.10.123
|
[5] |
WANG M, DUAN Y S, ZHANG Z Z, et al. Increased contribution to PM2.5 from traffic-influenced road dust in Shanghai over recent years and predictable future[J]. Environmental Pollution, 2022, 313: 120119. doi: 10.1016/j.envpol.2022.120119
|
[6] |
王苏蓉, 喻义勇, 王勤耕, 等. 基于PMF模式的南京市大气细颗粒物源解析[J]. 中国环境科学, 2015, 35(12): 3535-3542. doi: 10.3969/j.issn.1000-6923.2015.12.002
|
[7] |
王敬, 毕晓辉, 冯银厂, 等. 乌鲁木齐市重污染期间PM2.5污染特征与来源解析[J]. 环境科学研究, 2014, 27(2): 113-119.
|
[8] |
WILLIAN L A, TACIANA T A, PRASHANT K. Excess deaths associated with fine particulate matter in Brazilian cities[J]. Atmospheric Environment, 2018, 194: 71-81. doi: 10.1016/j.atmosenv.2018.09.034
|
[9] |
MOHAMMED M O A, SONG W W, MA W L, et al. Potential toxicological and cardiopulmonary effects of PM2.5 exposure and related mortality: Findings of recent studies published during 2003-2013[J]. Biomedical and Environmental Sciences, 2016, 29(1): 66-79.
|
[10] |
陶燕, 刘亚梦, 米生权, 等. 大气细颗粒物的污染特征及对人体健康的影响[J]. 环境科学学报, 2014, 34(3): 592-597. doi: 10.13671/j.hjkxxb.2014.0107
|
[11] |
林孜, 姬亚芹, 林宇, 等. 鞍山市道路扬尘碳组分特征及来源解析[J]. 环境科学, 2020, 41(9): 3918-3923.
|
[12] |
马妍, 姬亚芹, 国纪良, 等. 天津市春季样方法道路扬尘碳组分特征及来源解析[J]. 环境科学, 2019, 40(6): 2540-2545.
|
[13] |
胡月琪, 李萌, 颜旭, 等. 北京市典型道路扬尘化学组分特征及年际变化[J]. 环境科学, 2019, 40(4): 1645-1655.
|
[14] |
沈利娟, 王红磊, 孙杰娟, 等. 西安市城市降尘和土壤尘PM10和PM2.5中碳组分特征[J/OL]. 环境科学, 2022: 1-19,doi:10.13227/j.hjkx.202210051.
|
[15] |
张忠诚, 谢宇琪, 张智杰, 等. 基于两种受体模型的太原市大气降尘来源解析及季节变化特征[J]. 中国环境科学, 2022, 42(6): 2577-2586. doi: 10.3969/j.issn.1000-6923.2022.06.011
|
[16] |
郭森, 王蕾, 周盼, 等. 石家庄夏季道路尘有机碳和元素碳特征及来源[J]. 环境工程, 2018, 36(4): 122-126.
|
[17] |
张伟, 姬亚芹, 李树立, 等. 天津市春季道路降尘PM2.5和PM10中碳组分特征[J]. 环境科学研究, 2018, 31(2): 239-244.
|
[18] |
窦筱艳, 赵雪艳, 徐珣, 等. 应用化学质量平衡模型解析西宁大气PM2.5的来源[J]. 中国环境监测, 2016, 32(4): 7-14.
|
[19] |
CHOW J C, WASTON J G, PRITCHETT L C, et al. The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U. S. Air quality studies[J]. Atmospheric Environment. Part A:General Topics, 1993, 27(08): 1185-1201. doi: 10.1016/0960-1686(93)90245-T
|
[20] |
张灿, 周志恩, 翟崇治, 等. 基于重庆本地碳成分谱的PM2.5碳组分来源分析[J]. 环境科学, 2014, 35(3): 810-819.
|
[21] |
YU H, ZHAO X Y, WANG J, et al. Chemical characteristics of road dust PM2.5 fraction in oasis cities at the margin of Tarim Basin[J]. Journal of Environmental Sciences, 2020, 95(09): 217-224.
|
[22] |
于鸣媛, 王谦, 付明亮, 等. 机动车尾气碳质气溶胶排放因子及其稳定碳同位素特征[J/OL]. 环境科学, 2023, 1-12,doi:10.13227/j.hjkx.202212152.
|
[23] |
王红磊, 刘思晗, 孙杰娟, 等. 机动车源和民用燃料源颗粒物中有机碳和元素碳的排放特征[J]. 环境科学, 2023, 44(4): 1890-1898.
|
[24] |
CHOW J C, WASTON J G, LU Z, et al. Descriptive analysis of PM2.5, and PM10, at regionally representative locations during SJVAQS/AUSPEX[J]. Atmospheric Environment, 1996, 30(12): 2079-2112. doi: 10.1016/1352-2310(95)00402-5
|
[25] |
SCHAUER J J, KLEEMAN M J, Cass G R, et al. Measurement of emissions from air pollution sources: 5. C1-C32 organic compounds from gasoline-powered motor vehicles[J]. Environmental Science and Technology, 2002, 36(6): 1169-1180. doi: 10.1021/es0108077
|
[26] |
CHEN Y J, ZHI G R, FENG Y L, et al. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China[J]. Geophysical Research Letters, 2006, 33(20): 20815. doi: 10.1029/2006GL026966
|
[27] |
高玉宗, 姬亚芹, 林孜, 等. 西宁市生物质燃烧源大气污染物排放清单[J]. 环境科学, 2021, 42(12): 5585-5593.
|
[28] |
李冬, 陈建华, 张凯, 等. 保定市春季道路扬尘颗粒物中碳组分特征及来源分析[J]. 环境污染与防治, 2020, 42(10): 1293-1297.
|
[29] |
TURPIN B J, HUNTZICKER J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment, 1995, 29(23): 3527-3544. doi: 10.1016/1352-2310(94)00276-Q
|
[30] |
MILLET D B, DONAHUE N M, PANDIS S N, et al. Atmospheric volatile organic compound measurements during the Pittsburgh air quality study: results, interpretation, and quantification of primary and secondary contributions[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D7): 1-17.
|
[31] |
WU C, YU J Z. Determination of primary combustion source organic carbon-to-elemental carbon (OC / EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method[J]. Atmospheric Chemistry and Physics, 2016, 16(8): 5453-5465. doi: 10.5194/acp-16-5453-2016
|
[32] |
WU C, WU D, YU J Z. Quantifying black carbon light absorption enhancement with a novel statistical approach, Atmospheric Chemistry and Physics[J]. Atmospheric Chemistry and Physics, 2018, 18(1): 289-309. doi: 10.5194/acp-18-289-2018
|
[33] |
JI D S, GAO M, MAENHAUT W, et al. The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities[J]. Environment International, 2019, 126: 171-183. doi: 10.1016/j.envint.2019.02.034
|
[34] |
国纪良, 姬亚芹, 马妍, 等. 盘锦市夏冬季PM2.5中碳组分污染特征及来源分析[J]. 中国环境科学, 2019, 39(8): 3201-3206.
|
[35] |
CHOW J C, WASTON J G, KUHNS H, et al. Source profiles for industrial mobile and area sources in the Big Bend Regional Aerosol Visibility and Observational study[J]. Chemosphere, 2004, 54(02): 185-208. doi: 10.1016/j.chemosphere.2003.07.004
|
[36] |
CAO J J, WU F, Chow J C, et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China[J]. Atmospheric Chemistry and Physics, 2005, 5(11): 3127-3137. doi: 10.5194/acp-5-3127-2005
|
[37] |
DEMIR T, KARAKAS D, YENISOY-KARAKAS S. Source identification of exhaust and non-exhaust traffic emissions through the elemental carbon fractions and Positive Matrix Factorization method[J]. Environmental Research, 2022, 204: 112399. doi: 10.1016/j.envres.2021.112399
|