[1] 岳书敬, 孙晓玲. 城市群空间网络对污染减排效应的影响研究: 基于京津冀、长三角、珠三角三大城市群的对比 [J]. 中共南京市委党校学报, 2022(2): 85-93. doi: 10.3969/j.issn.1672-1071.2022.02.014 YUE S J, SUN X L. Research on the impact of urban agglomeration spatial network on pollution reduction effect: Based on the comparison of three major urban agglomerations in Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta [J]. Journal of Party School of Nanjing Municipal Committee of CPC, 2022(2): 85-93(in Chinese). doi: 10.3969/j.issn.1672-1071.2022.02.014
[2] WU X H, TIAN Z Q, KUAI Y, et al. Study on spatial correlation of air pollution and control effect of development plan for the city cluster in the Yangtze River Delta [J]. Socio-Economic Planning Sciences, 2022, 83: 101213. doi: 10.1016/j.seps.2021.101213
[3] WANG W, WANG H B, ORTIZ J, et al. The role of economic development on the effectiveness of industrial pollution reduction policy in Chinese Cities [J]. Journal of Cleaner Production, 2022, 339: 130709. doi: 10.1016/j.jclepro.2022.130709
[4] 孙金金, 黄琳, 龚康佳, 等. 2014—2019年北京和南京地区PM2.5和臭氧质量浓度相关性研究 [J]. 南京信息工程大学学报(自然科学版), 2020, 12(6): 656-664. SUN J J, HUANG L, GONG K J, et al. Correlation between surface PM2.5 and ozone during 2014-2019 in Beijing and Nanjing [J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(6): 656-664(in Chinese).
[5] ZHENG B, TONG D, LI M, et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions [J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14095-14111. doi: 10.5194/acp-18-14095-2018
[6] 王峰, 汪健伟, 杨宁, 等. VOCs源强不确定性对臭氧生成及污染防治影响的模拟分析 [J]. 环境科学, 2021, 42(12): 5713-5722. doi: 10.13227/j.hjkx.202103188 WANG F, WANG J W, YANG N, et al. WRF-chem simulations of the impacts of uncertainty in VOCs emissions on ozone formation and control strategies [J]. Environmental Science, 2021, 42(12): 5713-5722(in Chinese). doi: 10.13227/j.hjkx.202103188
[7] 王峰. VOCs源强的不确定性及其改进对自由基收支和臭氧生成率的影响[D]. 北京: 中国科学院大学, 2014. WANG F. The uncertainty of VOCs source intensity and its improvement influence on free radical budget and ozone generation rate[D]. Beijing: University of Chinese Academy of Sciences, 2014(in Chinese).
[8] 邵敏, 任信荣, 王会祥, 等. 城市大气中OH和HO2自由基生成和消除的定量关系 [J]. 科学通报, 2004, 49(17): 1716-1721. doi: 10.3321/j.issn:0023-074X.2004.17.005 SHAO M, REN X R, WANG H X, et al. The quantitative relationship between the generation and elimination of OH and HO2 free radicals in the atmosphere of cities [J]. Chinese Science Bulletin, 2004, 49(17): 1716-1721(in Chinese). doi: 10.3321/j.issn:0023-074X.2004.17.005
[9] 唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006. TANG X Y, ZHANG Y H, SHAO M. Atmospheric chemistry[M]. Beijing: Higher Education Press, 2006(in Chinese).
[10] 安俊岭, 李颖, 汤宇佳, 等. HONO来源及其对空气质量影响研究进展 [J]. 中国环境科学, 2014, 34(2): 273-281. AN J L, LI Y, TANG Y J, et al. Advances in HONO sources, HONO simulations, and the impacts of the HONO sources on regional or global air quality [J]. China Environmental Science, 2014, 34(2): 273-281(in Chinese).
[11] MA J Z, WANG W, CHEN Y, et al. The IPAC-NC field campaign: A pollution and oxidization pool in the lower atmosphere over Huabei, China [J]. Atmospheric Chemistry and Physics, 2012, 12(9): 3883-3908. doi: 10.5194/acp-12-3883-2012
[12] LU K D, ROHRER F, HOLLAND F, et al. Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: A missing OH source in a VOC rich atmosphere [J]. Atmospheric Chemistry and Physics, 2012, 12(3): 1541-1569. doi: 10.5194/acp-12-1541-2012
[13] THORNTON J A. Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume [J]. Journal of Geophysical Research, 2002, 107(D12): 4146. doi: 10.1029/2001JD000932
[14] LI J R, SAKAMOTO Y, KOHNO N, et al. Total hydroxyl radical reactivity measurements in a suburban area during AQUAS-Tsukuba campaign in summer 2017 [J]. Science of the Total Environment, 2020, 740: 139897. doi: 10.1016/j.scitotenv.2020.139897
[15] SAKAMOTO Y, KOHNO N, RAMASAMY S, et al. Investigation of OH-reactivity budget in the isoprene, α-pinene and m-xylene oxidation with OH under high NOx conditions [J]. Atmospheric Environment, 2022, 271: 118916. doi: 10.1016/j.atmosenv.2021.118916
[16] DIENHART D, CROWLEY J N, BOURTSOUKIDIS E, et al. Measurement report: Observation-based formaldehyde production rates and their relation to OH reactivity around the Arabian Peninsula [J]. Atmospheric Chemistry and Physics, 2021, 21(23): 17373-17388. doi: 10.5194/acp-21-17373-2021
[17] LU K D, ZHANG Y H, SU H, et al. Oxidant (O3+NO2) production processes and formation regimes in Beijing (vol 115, D07303, 2010) [J]. Journal of Geophysical Research Atmospheres, 2010, 115: D07303.
[18] LIU Z, WANG Y, GU D, et al. Summertime photochemistry during CAREBeijing-2007: ROx budgets and O3 formation [J]. Atmospheric Chemistry and Physics, 2012, 12(16): 7737-7752. doi: 10.5194/acp-12-7737-2012
[19] ZHANG Q, STREETS D G, CARMICHAEL G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5131-5153. doi: 10.5194/acp-9-5131-2009
[20] LI Y, AN J L, MIN M, et al. Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China [J]. Atmospheric Environment, 2011, 45(27): 4735-4744. doi: 10.1016/j.atmosenv.2011.04.086
[21] WIEDINMYER C, AKAGI S K, YOKELSON R J, et al. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning [J]. Geoscientific Model Development, 2011, 4(3): 625-641. doi: 10.5194/gmd-4-625-2011
[22] GUENTHER A, KARL T, HARLEY P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) [J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3181-3210. doi: 10.5194/acp-6-3181-2006
[23] GRELL G A, PECKHAM S E, SCHMITZ R, et al. Fully coupled “online” chemistry within the WRF model [J]. Atmospheric Environment, 2005, 39(37): 6957-6975. doi: 10.1016/j.atmosenv.2005.04.027
[24] ZAVERI R A, PETERS L K. A new lumped structure photochemical mechanism for large-scale applications [J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D23): 30387-30415. doi: 10.1029/1999JD900876
[25] 王峰, 汪健伟, 翟菁, 等. 卫星观测资料改进活性VOCs源排放及其对臭氧模拟影响 [J]. 中国环境科学, 2021, 41(6): 2504-2514. doi: 10.3969/j.issn.1000-6923.2021.06.003 WANG F, WANG J W, ZHAI J, et al. Emission improvements of reactive VOCs based on satellite observations and their impact on ozone simulations [J]. China Environmental Science, 2021, 41(6): 2504-2514(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.06.003
[26] FAST J D, GUSTAFSON W I Jr, EASTER R C, et al. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model [J]. Journal of Geophysical Research, 2006, 111(D21): D21305. doi: 10.1029/2005JD006721
[27] EMMONS L K, WALTERS S, HESS P G, et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) [J]. Geoscientific Model Development, 2010, 3(1): 43-67. doi: 10.5194/gmd-3-43-2010
[28] X W, Y Z, HU Y T, et al. Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system [J]. Atmospheric Chemistry and Physics, 2010, 10(9): 4423-4437. doi: 10.5194/acp-10-4423-2010
[29] LI L, CHEN C H, HUANG C, et al. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system [J]. Atmospheric Chemistry and Physics, 2012, 12(22): 10971-10987. doi: 10.5194/acp-12-10971-2012
[30] ZHANG H L, LI J Y, YING Q, et al. Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model [J]. Atmospheric Environment, 2012, 62: 228-242. doi: 10.1016/j.atmosenv.2012.08.014
[31] WANG F, AN J L, LI Y, et al. Impacts of uncertainty in AVOC emissions on the summer ROx budget and ozone production rate in the three most rapidly-developing economic growth regions of China [J]. Advances in Atmospheric Sciences, 2014, 31(6): 1331-1342. doi: 10.1007/s00376-014-3251-z
[32] TANG Y, AN J, WANG F, et al. Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China [J]. Atmospheric Chemistry and Physics, 2015, 15(16): 9381-9398. doi: 10.5194/acp-15-9381-2015
[33] KLEINMAN L I, DAUM P H, LEE J H, et al. Dependence of ozone production on NO and hydrocarbons in the troposphere [J]. Geophysical Research Letters, 1997, 24(18): 2299-2302. doi: 10.1029/97GL02279
[34] SONG S K, KIM Y K, SHON Z H, et al. Photochemical analyses of ozone and related compounds under various environmental conditions [J]. Atmospheric Environment, 2012, 47: 446-458. doi: 10.1016/j.atmosenv.2011.10.026
[35] SHAO M, LU S H, LIU Y, et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation [J]. Journal of Geophysical Research Atmospheres, 2009, 114(7): D00G06.