[1] KARTAL B, MAALCKE W J, DE ALMEIDA N M, et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature, 2011, 479(7371): 127-130. doi: 10.1038/nature10453
[2] DENG W, WANG L, CHENG L, et al. Nitrogen removal from mature landfill leachate via anammox based processes: A Review[J]. Sustainability, 2022, 14(2): 995. doi: 10.3390/su14020995
[3] REN S, ZHANG L, ZHANG Q, et al. Anammox-mediated municipal solid waste leachate treatment: A critical review[J]. Bioresource Technology, 2022, 361: 127715. doi: 10.1016/j.biortech.2022.127715
[4] 宋韶华, 刘永军, 杨璐, 等. 厌氧氨氧化技术在废水处理中的研究与应用进展[J]. 水处理技术, 2022, 48(10): 6-12.
[5] CHEN H, HU H, CHEN Q, et al. Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties[J]. Bioresource Technology, 2016, 211: 594-602. doi: 10.1016/j.biortech.2016.03.139
[6] WANG Q, WANG Y, LIN J, et al. Selection of seeding strategy for fast start-up of Anammox process with low concentration of Anammox sludge inoculum[J]. Bioresource Technology, 2018, 268: 638-647. doi: 10.1016/j.biortech.2018.08.056
[7] WANG Y, XIE H, WANG D, et al. Insight into the response of anammox granule rheological intensity and size evolution to decreasing temperature and influent substrate concentration[J]. Water Research, 2019, 162: 258-268. doi: 10.1016/j.watres.2019.06.060
[8] NI S Q, NI J Y, HU D L, et al. Effect of organic matter on the performance of granular anammox process[J]. Bioresource Technology, 2012, 110: 701-705. doi: 10.1016/j.biortech.2012.01.066
[9] KIM J, GUO X, PARK H. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation[J]. Process biochemistry, 2008, 43(2): 154-160. doi: 10.1016/j.procbio.2007.11.005
[10] STROUS M, KUENEN J G, JETTEN M S. Key physiology of anaerobic ammonium oxidation.[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. doi: 10.1128/AEM.65.7.3248-3250.1999
[11] TANG C J, ZHENG P, WANG C H, et al. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor[J]. Bioresource Technology, 2010, 101(6): 1762-1768. doi: 10.1016/j.biortech.2009.10.032
[12] VAN DER STAR W R L, DIJKEMA C, DE WAARD P, et al. An intracellular pH gradient in the anammox bacterium Kuenenia stuttgartiensis as evaluated by 31P NMR[J]. Applied Microbiology and Biotechnology, 2010, 86(1): 311-317. doi: 10.1007/s00253-009-2309-9
[13] XIANG T, GAO D, WANG X. Performance and microbial community analysis of two sludge type reactors in achieving mainstream deammonification with hydrazine addition[J]. Science of the Total Environment, 2020, 715(C): 136377.
[14] ZEKKER I, ARTEMCHUK O, RIKMANN E, et al. Start-Up of anammox SBR from non-specific inoculum and process Acceleration Methods by Hydrazine[J]. Water, 2021, 13(3): 350. doi: 10.3390/w13030350
[15] MIODOŃSKI S, MUSZYŃSKI-HUHAJŁO M, ZIĘBA B, et al. Fast start-up of anammox process with hydrazine addition[J]. SN Applied Sciences, 2019.
[16] van de GRAAF A A, de BRUIJN P, ROBERTSON L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8): 2187-2196. doi: 10.1099/13500872-142-8-2187
[17] 编委会国家环境保护总局水和废水监测分析方法. 水和废水监测分析方法 (第四版)[M]. 水和废水监测分析方法 (第四版), 2002.
[18] BRADFORD M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[19] GAUDY A F. Colorimetric determination of protein and carbohydrate[J]. Water Wastes, 1962, 7(1): 17-22.
[20] 唐崇俭. 厌氧氨氧化工艺特性与控制技术的研究[D]. 杭州: 浙江大学, 2011.
[21] 汪瑶琪, 张敏, 姜滢, 等. 厌氧氨氧化启动过程及微生物群落结构特征[J]. 环境科学, 2017, 38(12): 5184-5191.
[22] CHAMCHOI N, NITISORAVUT S. Anammox enrichment from different conventional sludges[J]. Chemosphere (Oxford), 2007, 66(11): 2225-2232. doi: 10.1016/j.chemosphere.2006.09.036
[23] 丁爽, 郑平, 唐崇俭, 等. 三种接种物启动Anammox-EGSB反应器的性能[J]. 生物工程学报, 2011, 27(4): 629-636.
[24] 闾刚, 李田, 徐乐中, 等. 基于不同接种污泥复合型厌氧氨氧化反应器的快速启动特征[J]. 环境科学, 2017, 38(10): 4324-4331.
[25] XU L Z, ZHANG Q, FU J J, et al. Deciphering the microbial community and functional genes response of anammox sludge to sulfide stress[J]. Bioresource Technology, 2020, 302(C): 122885.
[26] 杨盈盈, 陈奕, 李明杰, 等. 进水渗滤液总氮和BOD_5/TN对填埋场反应器反硝化和厌氧氨氧化协同脱氮的影响[J]. 环境科学, 2015, 36(4): 1412-1416.
[27] 姚宗豹. Anammox新体系: 外加N2H4的影响、NO的脱出和Fe(Ⅲ)氧化NH4+[D]. 重庆: 重庆大学, 2015.
[28] XIANG T, LIANG H, GAO D. Effect of exogenous hydrazine on metabolic process of anammox bacteria[J]. Journal of Environmental Management, 2022, 317: 115398. doi: 10.1016/j.jenvman.2022.115398
[29] YAO Z, LU P, ZHANG D, et al. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition[J]. Bioresource Technology, 2015, 198: 70-76. doi: 10.1016/j.biortech.2015.08.098
[30] 蔡庆, 丁佳佳. N2H4强化厌氧氨氧化机理及动力学特性[J]. 水处理技术, 2015, 41(5): 73-77.
[31] 鲍林林, 李晓珍, 李孙林, 等. 联氨对HABR全程自养脱氮系统的影响[J]. 中国给水排水, 2020, 36(5): 26-32.
[32] 陈佼, 陆一新, 李滨伶, 等. CRI系统厌氧氨氧化协同反硝化脱氮的启动及性能[J]. 环境科学与技术, 2021, 44(9): 86-92. doi: 10.19672/j.cnki.1003-6504.0639.21.338
[33] MA J, YAO H, YU H, et al. Hydrazine addition enhances the nitrogen removal capacity in an anaerobic ammonium oxidation system through accelerating ammonium and nitrite degradation and reducing nitrate production[J]. Chemical engineering journal (Lausanne, Switzerland:1996), 2018, 335: 401-408.
[34] 范丹, 李冬, 梁瑜海, 等. 生活污水SNAD颗粒污泥快速启动及脱氮性能研究[J]. 中国环境科学, 2016, 36(11): 3321-3328. doi: 10.3969/j.issn.1000-6923.2016.11.015
[35] 杨明明, 刘子涵, 周杨, 等. 厌氧氨氧化颗粒污泥EPS及其对污泥表面特性的影响[J]. 环境科学, 2019, 40(5): 2341-2348.
[36] 高梦佳, 王淑莹, 王衫允, 等. 生活污水对成熟厌氧氨氧化颗粒污泥的影响[J]. 化工学报, 2017, 68(5): 2066-2073.
[37] MIAO L, ZHANG Q, WANG S, et al. Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate[J]. Bioresource Technology, 2018, 249: 108-116. doi: 10.1016/j.biortech.2017.09.151
[38] LIU S, LIN C, DIAO X, et al. Interactions between tetracycline and extracellular polymeric substances in anammox granular sludge[J]. Bioresource Technology, 2019, 293: 122069. doi: 10.1016/j.biortech.2019.122069
[39] CHEN Z, ZHOU S, WANG J, et al. Recovery of anaerobic ammonium oxidation via hydrazine following sulfate inhibition[J]. Environmental Science: Water Research & Technology, 2022.
[40] FUERST J A, SAGULENKO E. Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function[J]. Nature Review Microbiology, 2011, 9(6): 403-413. doi: 10.1038/nrmicro2578
[41] HOSOKAWA S, KURODA K, NARIHIRO T, et al. Cometabolism of the superphylum patescibacteria with anammox bacteria in a long-term freshwater anammox column reactor[J]. Water (Basel), 2021, 13(2): 208.
[42] HE S, CHEN Y, QIN M, et al. Effects of temperature on anammox performance and community structure[J]. Bioresource Technology, 2018, 260: 186-195. doi: 10.1016/j.biortech.2018.03.090
[43] HU B L, ZHENG P, TANG C J, et al. Identification and quantification of anammox bacteria in eight nitrogen removal reactors[J]. Water Research, 2010, 44(17): 5014-5020. doi: 10.1016/j.watres.2010.07.021
[44] JIANG X, HOU L, ZHENG Y, et al. Salinity-driven shifts in the activity, diversity, and abundance of anammox bacteria of estuarine and coastal wetlands[J]. Physics and chemistry of the earth. Parts A/B/C, 2017, 97: 46-53. doi: 10.1016/j.pce.2017.01.012