[1] |
DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review [J]. Environmental Chemistry Letters, 2013, 11(3): 209-227. doi: 10.1007/s10311-013-0404-8
|
[2] |
KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review [J]. Chemosphere, 2020, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351
|
[3] |
LEE J, von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks [J]. Environmental Science & Technology, 2020, 54(6): 3064-3081.
|
[4] |
唐亚鑫, 黄雯, 张建强, 等. Fe0/Fe3C羊粪生物炭复合材料的制备及其活化过一硫酸盐降解磺胺嘧啶 [J]. 环境化学, 2022, 41(12): 3991-4005. doi: 10.7524/j.issn.0254-6108.2021081602
TANG Y X, HUANG W, ZHANG J Q, et al. Preparation of Fe0/Fe3C sheep manure biochar composites for activating peroxymonosulfate to degrade sulfadiazine [J]. Environmental Chemistry, 2022, 41(12): 3991-4005(in Chinese). doi: 10.7524/j.issn.0254-6108.2021081602
|
[5] |
张永祥, 杜伟, 李雅君, 等. 纳米零价铁在水处理中的应用研究综述 [J]. 中国环境科学, 2022, 42(11): 5163-5178. doi: 10.3969/j.issn.1000-6923.2022.11.023
ZHANG Y X, DU W, LI Y J, et al. A review of nano zero valent iron in water treatment [J]. China Environmental Science, 2022, 42(11): 5163-5178(in Chinese). doi: 10.3969/j.issn.1000-6923.2022.11.023
|
[6] |
REDDY A V B, YUSOP Z, JAAFAR J, et al. Recent progress on Fe-based nanoparticles: Synthesis, properties, characterization and environmental applications [J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3537-3553. doi: 10.1016/j.jece.2016.07.035
|
[7] |
SUN Y Q, LEI C, KHAN E, et al. Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment [J]. Science of the Total Environment, 2018, 615(15): 498-507.
|
[8] |
LI Z, SUN Y Q, YANG Y, et al. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater [J]. Journal of Hazardous Materials, 2020, 383(5): 121240.
|
[9] |
DIAO Z H, ZHANG W X, LIANG J Y, et al. Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxymonosulfate process from soil: Synergistic effect and mechanism [J]. Chemical Engineering Journal, 2021, 409(1): 127684.
|
[10] |
JIANG S F, LING L L, CHEN W J, et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors [J]. Chemical Engineering Journal, 2019, 359(1): 572-583.
|
[11] |
ZHANG W, YAN L G, WANG Q D, et al. Ball milling boosted the activation of peroxymonosulfate by biochar for tetracycline removal [J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106870. doi: 10.1016/j.jece.2021.106870
|
[12] |
LI M Q, LUO R, WANG C H, et al. Iron-tannic modified cotton derived Fe0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation [J]. Chemical Engineering Journal, 2019, 372(15): 774-784.
|
[13] |
XU X M, CHEN W M, ZONG S Y, et al. Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability [J]. Journal of Hazardous Materials, 2019, 377(5): 62-69.
|
[14] |
TANG S F, ZHAO M Z, YUAN D L, et al. Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation [J]. Chemosphere, 2021, 268: 129315. doi: 10.1016/j.chemosphere.2020.129315
|
[15] |
YI Y, WANG X Y, MA J, et al. Fe(Ⅲ) modified Egeria najas driven-biochar for highly improved reduction and adsorption performance of Cr(Ⅵ) [J]. Powder Technology, 2021, 388: 485-495. doi: 10.1016/j.powtec.2021.04.066
|
[16] |
PENG R H, XU X J, AN J J, et al. Research on Treatment of leaded wastewater by process combined Fe/C micro-electrolysis with microbial adsorbent-flocculant [J]. Applied Mechanics and Materials, 2014, 700: 470-474. doi: 10.4028/www.scientific.net/AMM.700.470
|
[17] |
QIAN J, YANG X W, JIANG L, et al. Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine [J]. Sensors and Actuators B:Chemical, 2014, 201(1): 160-166.
|
[18] |
ZANG T C, WANG H, LIU Y H, et al. Fe-doped biochar derived from waste sludge for degradation of rhodamine B via enhancing activation of peroxymonosulfate [J]. Chemosphere, 2020, 261: 127616. doi: 10.1016/j.chemosphere.2020.127616
|
[19] |
HAN Q, WANG Z H, XIA J F, et al. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples [J]. Talanta, 2012, 101(15): 388-395.
|
[20] |
CAO J Y, LAI L D, LAI B, et al. Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity and mechanism [J]. Chemical Engineering Journal, 2019, 364(15): 45-56.
|
[21] |
LONG Y K, HUANG Y X, WU H Y, et al. Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight [J]. Chemical Engineering Journal, 2019, 369(1): 542-552.
|
[22] |
WU Y W, CHEN X T, HAN Y, et al. Highly efficient utilization of nano-Fe(0) embedded in mesoporous carbon for activation of peroxydisulfate [J]. Environmental Science & Technology, 2019, 53(15): 9081-9090.
|
[23] |
WANG Y, DENG W Q, LIU X W, et al. Electrochemical hydrogen storage properties of ball-milled multi-wall carbon nanotubes [J]. International Journal of Hydrogen Energy, 2009, 34(3): 1437-1443. doi: 10.1016/j.ijhydene.2008.11.085
|
[24] |
TAKDASTAN A, KAKAVANDI B, AZIZI M, et al. Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: A new approach into catalytic degradation of bisphenol A [J]. Chemical Engineering Journal, 2018, 331(1): 729-743.
|
[25] |
DU J K, BAO J G, LIU Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A [J]. Journal of Hazardous Materials, 2016, 320(15): 150-159.
|
[26] |
WANG X, WANG L G, LI J B, et al. Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation [J]. Separation and Purification Technology, 2014, 122(10): 41-46.
|
[27] |
HUANG P, ZHANG P, WANG C P, et al. P-doped biochar regulates nZVI nanocracks formation for superefficient persulfate activation [J]. Journal of Hazardous Materials, 2023, 450(15): 130999.
|
[28] |
ZHU S J, XU Y P, ZHU Z G, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation [J]. Chemical Engineering Journal, 2020, 384(15): 123298.
|
[29] |
TAO S Y, YANG J K, HOU H J, et al. Enhanced sludge dewatering via homogeneous and heterogeneous Fenton reactions initiated by Fe-rich biochar derived from sludge [J]. Chemical Engineering Journal, 2019, 372(15): 966-977.
|
[30] |
MISKOSKI S, GARCÍA N A. Influence of the peptide bond on the singlet molecular oxygen-mediated (O2[1Δg]) photooxidation of histidine and methionine dipeptides. A kinetic study [J]. Photochemistry and Photobiology, 1993, 57(3): 447-452. doi: 10.1111/j.1751-1097.1993.tb02317.x
|
[31] |
LEE H, KIM H I, WEON S, et al. Activation of persulfates by graphitized nanodiamonds for removal of organic compounds [J]. Environmental Science & Technology, 2016, 50(18): 10134-10142.
|
[32] |
QIN W X, FANG G D, WANG Y J, et al. Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals [J]. Chemical Engineering Journal, 2018, 348(15): 526-534.
|
[33] |
LI X G, WANG L, GUO Y X, et al. Goethite-MoS2 hybrid with dual active sites boosted peroxymonosulfate activation for removal of tetracycline: The vital roles of hydroxyl radicals and singlet oxygen [J]. Chemical Engineering Journal, 2022, 450(15): 138104.
|
[34] |
CHEN L K, HUANG Y F, ZHOU M L, et al. Nitrogen-doped porous carbon encapsulating iron nanoparticles for enhanced sulfathiazole removal via peroxymonosulfate activation [J]. Chemosphere, 2020, 250: 126300. doi: 10.1016/j.chemosphere.2020.126300
|
[35] |
XU L, FU B R, SUN Y, et al. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application [J]. Chemical Engineering Journal, 2020, 400(15): 125870.
|
[36] |
GUO Y X, YAN L G, LI X G, et al. Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation: Inherent roles of radical and non-radical processes [J]. Science of the Total Environment, 2021, 783(20): 147102.
|