[1] |
KUMAR A, KHAN M, HE J, et al. Recent developments and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: A critical review[J]. Water Research, 2020, 170: 115356. doi: 10.1016/j.watres.2019.115356
|
[2] |
QIAO M, YING G-G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160-172. doi: 10.1016/j.envint.2017.10.016
|
[3] |
BAILóN-PéREZ M I, GARCíA-CAMPAñA A M, CRUCES-BLANCO C, et al. Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis[J]. Journal of Chromatography A, 2008, 1185(2): 273-280. doi: 10.1016/j.chroma.2007.12.088
|
[4] |
HEBERER T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data[J]. Toxicology Letters, 2002, 131(1-2): 5-17. doi: 10.1016/S0378-4274(02)00041-3
|
[5] |
LIN Y C, YU T H, LIN C F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan[J]. Chemosphere, 2009, 74(1): 131-141.
|
[6] |
唐玉霖, 曲鑫璐, 刘倩宏, 等. 紫外联用高级氧化技术降解氯霉素试验研究[J]. 同济大学学报(自然科学版), 2021, 49(09): 1249-1256.
|
[7] |
CHU T, YANG D, CHU W, et al. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments[J]. Ecotoxicology and Environmental Safety, 2016, 124: 147-154. doi: 10.1016/j.ecoenv.2015.10.016
|
[8] |
WANG A, GUO S, ZHENG Z, et al. Highly dispersed Ag and g-C3N4 quantum dots co-decorated 3D hierarchical Fe3O4 hollow microspheres for solar-light-driven pharmaceutical pollutants degradation in natural water matrix[J]. Journal of hazardous materials, 2022, 434: 128905. doi: 10.1016/j.jhazmat.2022.128905
|
[9] |
WANG A, CHEN Y, ZHENG Z, et al. In situ N-doped carbon-coated mulberry-like cobalt manganese oxide boosting for visible light driving photocatalytic degradation of pharmaceutical pollutants[J]. Chemical Engineering Journal, 2021, 411: 128497. doi: 10.1016/j.cej.2021.128497
|
[10] |
赵瑞. 电化学法降解抗生素类有机物的研究[D]. 济南: 齐鲁工业大学, 2019.
|
[11] |
张思韬, 韩严和, 张晓飞, 等. 用于处理工业废水的电极材料研究进展[J]. 工业水处理, 2019, 3 9(11): 1-6.
|
[12] |
智丹, 王建兵, 王维一, 等. Ti/Ti4O7阳极电化学氧化降解水中的美托洛尔[J]. 环境科学学报, 2018, 38(5): 1858-1867.
|
[13] |
韩金名. NF/CN-TF/Ti4O7电化学体系对磺胺甲基嘧啶降解机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
[14] |
王愚. 亚氧化钛电化学阳极氧化降解印染废水研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
[15] |
XIE J, MA J, ZHANG C, et al. Effect of the Presence of Carbon in Ti4O7 Electrodes on Anodic Oxidation of Contaminants[J]. Environmental Science and Technology, 2020, 54(8): 5227-5236. doi: 10.1021/acs.est.9b07398
|
[16] |
BEJAN D, GUINEA E, BUNCE N J. On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex anodes[J]. Electrochimica Acta, 2012, 69: 275-281. doi: 10.1016/j.electacta.2012.02.097
|
[17] |
GAYEN P, CHEN C, ABIADE J T, et al. Electrochemical oxidation of atrazine and clothianidin on Bi-doped SnO2-TinO2n-1 electrocatalytic reactive electrochemical membranes[J]. Environmental Science and Technology, 2018, 52(21): 12675-12684. doi: 10.1021/acs.est.8b04103
|
[18] |
杨泽坤, 刘永, 杨海涛等. 亚氧化钛电极的制备及其在废水处理中的应用[J]. 工业水处理, 2022, 42(11): 56-64. doi: 10.19965/j.cnki.iwt.2021-1118
|
[19] |
WANG H, LI Z, ZHANG F, et al. Comparison of Ti/Ti4O7, Ti/Ti4O7-PbO2-Ce, and Ti/Ti4O7 nanotube array anodes for electro-oxidation of p-nitrophenol and real wastewater[J]. Separation and Purification Technology, 2021, 266: 118600. doi: 10.1016/j.seppur.2021.118600
|
[20] |
NAYAK S, CHAPLIN B P. Fabrication and characterization of porous, conductive, monolithic Ti4O7 electrodes[J]. Electrochimica Acta, 2018, 263: 299-310. doi: 10.1016/j.electacta.2018.01.034
|
[21] |
张立宝. Ti/SnO2-Sb-Ni电极制备及对CAP废水的降解机理研究[D]. 沈阳: 沈阳工业大学, 2020.
|
[22] |
杨志伟. 超声强化亚氧化钛阳极电化学氧化处理氯霉素废水的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
[23] |
LIN H, NIU J, LIANG S, et al. Development of macroporous Magnéli phase Ti4O7 ceramic materials: as an efficient anode for mineralization of poly- and perfluoroalkyl substances[J]. Chemical Engineering Journal, 2018, 354: 1058-1067. doi: 10.1016/j.cej.2018.07.210
|
[24] |
ZHU K, SHI F, ZHU X, et al. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction[J]. Nano Energy, 2020, 73: 104761. doi: 10.1016/j.nanoen.2020.104761
|
[25] |
LI D, TANG J, ZHOU X, et al. Electrochemical degradation of pyridine by Ti/SnO2–Sb tubular porous electrode[J]. Chemosphere, 2016, 149: 49-56. doi: 10.1016/j.chemosphere.2016.01.078
|
[26] |
SäRKKä H, BHATNAGAR A, SILLANPää M. Recent developments of electro-oxidation in water treatment: A review[J]. Journal of Electroanalytical Chemistry, 2015, 754: 46-56. doi: 10.1016/j.jelechem.2015.06.016
|
[27] |
JIAO T, LU C, ZHANG D, et al. Bi-functional Fe2ZrO5 modified hematite photoanode for efficient solar water splitting[J]. Applied Catalysis B:Environmental, 2020, 269: 118768. doi: 10.1016/j.apcatb.2020.118768
|
[28] |
于丽花, 薛娟琴, 张立华, 等. 操作条件对电氧化去除废水中有机污染物的影响研究[J]. 环境工程, 2017, 35(5): 6-10.
|
[29] |
URANO Y, HIGUCHI T, HIROBE M. Substrate-dependent changes of the oxidative O-dealkylation mechanism of several chemical and biological oxidizing systems[J]. Journal of the Chemical Society Perkin Transactions, 1996, 6(6): 1169-1173.
|
[30] |
陈安妮, 童展梁, 姚佳超, 等. 电氧化处理印染行业膜后浓水的研究[J]. 工业水处理, 2021, 41(11): 51-55.
|
[31] |
LUO C, MA J, JIANG J, et al. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5− and UV/S2O82−[J]. Water Research, 2015, 80: 99-108. doi: 10.1016/j.watres.2015.05.019
|
[32] |
FANG G-D, DIONYSIOU D D, AL-ABED S R, et al. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs[J]. Applied Catalysis B:Environmental, 2013, 129: 325-332. doi: 10.1016/j.apcatb.2012.09.042
|
[33] |
李靖宇, 王宪森, 王晓林, 等. 载铁活性炭颗粒电极降解氯霉素污染废水性能研究[J]. 江西化工, 2021, 37(5): 56-58.
|
[34] |
CHEN J, XIA Y, DAI Q. Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism[J]. Electrochimica Acta, 2015, 165: 277-287. doi: 10.1016/j.electacta.2015.02.029
|
[35] |
XU J, LIU Y, LI D, et al. Insights into the electrooxidation of florfenicol by a highly active La-doped Ti4O7 anode[J]. Separation and Purification Technology, 2022, 291: 120904. doi: 10.1016/j.seppur.2022.120904
|
[36] |
滕刚刚. PbO2-ZrO2复合电极电催化氧化降解典型PPCPs类污染物的研究[D]. 天津: 河北工业大学, 2020.
|