[1] DANGCONG P, BERNET N, DELGENES J-P, et al. Aerobic granular sludge—a case report[J]. Water Research, 1999, 33(3): 890-893. doi: 10.1016/S0043-1354(98)00443-6
[2] BANDARA H M H N, LAM O L T, JIN L J, et al. Microbial chemical signaling: a current perspective[J]. Critical Reviews in Microbiology, 2012, 38(3): 217-249. doi: 10.3109/1040841X.2011.652065
[3] ZHANG Z, CAO R, JIN L, et al. The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge[J]. Science of the Total Environment, 2019, 673: 83-91. doi: 10.1016/j.scitotenv.2019.04.052
[4] ZHANG Z, YU Z, WANG Z, et al. Understanding of aerobic sludge granulation enhanced by sludge retention time in the aspect of quorum sensing[J]. Bioresource Technology, 2019, 272: 226-234. doi: 10.1016/j.biortech.2018.10.027
[5] SARMA S J, TAY J H, CHU A. Finding knowledge gaps in aerobic granulation technology[J]. Trends in Biotechnology, 2017, 35(1): 66-78. doi: 10.1016/j.tibtech.2016.07.003
[6] TAO J, QIN L, LIU X, et al. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism[J]. Bioresource Technology, 2017, 236: 60-67. doi: 10.1016/j.biortech.2017.03.106
[7] VERAWATY M, PIJUAN M, YUAN Z, et al. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment[J]. Water Research, 2012, 46(3): 761-771. doi: 10.1016/j.watres.2011.11.054
[8] LIN H, MA R, HU Y, et al. Reviewing bottlenecks in aerobic granular sludge technology: Slow granulation and low granular stability[J]. Environmental Pollution, 2020, 263: 114638. doi: 10.1016/j.envpol.2020.114638
[9] RIZZO L, MANAIA C, MERLIN C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review[J]. Science of the Total Environment, 2013, 447: 345-360. doi: 10.1016/j.scitotenv.2013.01.032
[10] LAMBA M, GRAHAM D W, AHAMMAD S Z. Hospital wastewater releases of carbapenem-resistance pathogens and genes in urban india[J]. Environmental Science & Technology, 2017, 51(23): 13906-13912.
[11] JAYA DIVAKARAN S, SARA PHILIP J, CHEREDDY P, et al. Insights into the bacterial profiles and resistome structures following the severe 2018 flood in Kerala, South India[J]. Microorganisms, 2019, 7(10): 474. doi: 10.3390/microorganisms7100474
[12] GILBERT J A, ZHANG T, ZHANG X-X, et al. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge[J]. PloS one, 2011, 6(10): e26041. doi: 10.1371/journal.pone.0026041
[13] SENTCHILO V, MAYER A P, GUY L, et al. Community-wide plasmid gene mobilization and selection[J]. Integrated Genomics and Post-Genomics Approaches in Microbial Ecology, 2013, 7(6): 1173-1186.
[14] LI A-D, LI L-G, ZHANG T. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants[J]. Frontiers in Microbiology, 2015, 6: 1025.
[15] CHE Y, XIA Y, LIU L, et al. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing[J]. Microbiome, 2019, 7(1): 1-13. doi: 10.1186/s40168-018-0604-3
[16] ZHAO C, LI J, LI C, et al. Horizontal transfer of the multidrug resistance plasmid RP4 inhibits ammonia nitrogen removal dominated by ammonia-oxidizing bacteria[J]. Water Research, 2022, 217: 118434. doi: 10.1016/j.watres.2022.118434
[17] ZOU W, XUE B, ZHI W, et al. Effects of antibiotic resistance genes on the performance and stability of different microbial aggregates in a granular sequencing batch reactor[J]. Journal of Hazardous Materials, 2016, 304: 343-351. doi: 10.1016/j.jhazmat.2015.10.057
[18] 魏复盛主编;国家环境保护总局, 水和废水监测分析方法编委会编. 水和废水监测分析方法 第4版 [M]. 北京: 中国环境科学出版社, 2002.
[19] MCSWAIN B S, IRVINE R L, HAUSNER M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Applied and Environmental Microbiology, 2005, 71(2): 1051-1057. doi: 10.1128/AEM.71.2.1051-1057.2005
[20] LIANG Z, LI W, YANG S, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81(5): 626-632. doi: 10.1016/j.chemosphere.2010.03.043
[21] SUN Y, HE K, YIN Q, et al. Determination of quorum-sensing signal substances in water and solid phases of activated sludge systems using liquid chromatography–mass spectrometry[J]. Journal of Environmental Sciences, 2018, 69: 85-94. doi: 10.1016/j.jes.2017.04.017
[22] JIANG Y, LIU Y, ZHANG H, et al. Aerobic granular sludge shows enhanced resistances to the long-term toxicity of Cu(II)[J]. Chemosphere, 2020, 253: 126664. doi: 10.1016/j.chemosphere.2020.126664
[23] WANG J, LIU Q, DONG D, et al. In-situ monitoring of the unstable bacterial adhesion process during wastewater biofilm formation: A comprehensive study[J]. Environment International, 2020, 140: 105722. doi: 10.1016/j.envint.2020.105722
[24] ZHANG L, FENG X, ZHU N, et al. Role of extracellular protein in the formation and stability of aerobic granules[J]. Enzyme and Microbial Technology, 2007, 41(5): 551-557. doi: 10.1016/j.enzmictec.2007.05.001
[25] SEVIOUR T, PIJUAN M, NICHOLSON T, et al. Understanding the properties of aerobic sludge granules as hydrogels [J]. 2009, 102(5): 1483-1493.
[26] PENG T, WANG Y, WANG J, et al. Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge[J]. Chemosphere, 2022, 303: 135116. doi: 10.1016/j.chemosphere.2022.135116
[27] TIAN S, SU L, LIU Y, et al. Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms-An intravital imaging study in mice[J]. Science Advances, 2020, 6(33): eabb1112. doi: 10.1126/sciadv.abb1112
[28] WANG Z, LIU L, YAO J, et al. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors[J]. Chemosphere, 2006, 63(10): 1728-1735. doi: 10.1016/j.chemosphere.2005.09.018
[29] 朱邦辉, 万金保. 好氧颗粒污泥中胞外聚合物作用机理的探讨[J]. 江西科学, 2009, 27(6): 848-854.
[30] LIAO B Q, ALLEN D G, DROPPO I G, et al. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Research, 2001, 35(2): 339-50. doi: 10.1016/S0043-1354(00)00277-3
[31] HU X, KANG F, YANG B, et al. Extracellular polymeric substances acting as a permeable barrier hinder the lateral transfer of antibiotic resistance genes[J]. Frontiers in Microbiology, 2019, 10: 736. doi: 10.3389/fmicb.2019.00736
[32] FENG Z, SUN Y, LI T, et al. Operational pattern affects nitritation, microbial community and quorum sensing in nitrifying wastewater treatment systems[J]. Science of the Total Environment, 2019, 677: 456-465. doi: 10.1016/j.scitotenv.2019.04.371
[33] LIU F, ZHANG Y, LIANG H, et al. Specific quorum sensing molecules of ammonia oxidizers and their role during ammonium metabolism in Zhalong wetland, China[J]. Science of the Total Environment, 2019, 666: 1106-1113. doi: 10.1016/j.scitotenv.2019.02.261
[34] GAO H, YE J, ZHAO R, et al. Pluripotency of endogenous AHL-mediated quorum sensing in adaptation and recovery of biological nitrogen removal system under ZnO nanoparticle long-term exposure[J]. Science of the Total Environment, 2022, 842: 156911. doi: 10.1016/j.scitotenv.2022.156911
[35] WANG W, ZANG Y, WANG C, et al. Effects of four kinds of oxide nanoparticles on proteins in extracellular polymeric substances of sludge[J]. BioMed Research International, 2020, 2020: 1-13.
[36] 支丽玲, 马鑫欣, 刘奇欣, 等. 好氧颗粒污泥形成过程中群感效应的作用研究[J]. 中国环境科学, 2020, 40(5): 2148-2156. doi: 10.19674/j.cnki.issn1000-6923.2020.0245
[37] XIONG F, ZHAO X, WEN D, et al. Effects of N-acyl-homoserine lactones-based quorum sensing on biofilm formation, sludge characteristics, and bacterial community during the start-up of bioaugmented reactors[J]. Science of the Total Environment, 2020, 735: 139449. doi: 10.1016/j.scitotenv.2020.139449
[38] KAMATH A, SHUKLA A, PATEL D. Quorum sensing and quorum quenching: Two sides of the same coin[J]. Physiological and Molecular Plant Pathology, 2023, 123: 101927. doi: 10.1016/j.pmpp.2022.101927