[1] |
朱芬芬, 王欢, 徐智敏, 等. 有机固废燃烧烟气中PM2.5的过滤比较研究[J]. 中国环境科学, 2021, 41(9): 4193-4203. doi: 10.3969/j.issn.1000-6923.2021.09.026
|
[2] |
LIN F, CHEN P, HUANG T, et al. 3D in-situ simulation and particle tracing of gas filtration process for ultrafine particles removal using a hollow fiber membrane[J]. Journal of Membrane Science, 2021, 632: 119380. doi: 10.1016/j.memsci.2021.119380
|
[3] |
吕超, 柳静献. 高炉除尘灰细微颗粒物单/双预荷电强化滤袋过滤特性[J]. 环境工程学报, 2023, 17(1): 180-187. doi: 10.12030/j.cjee.202209099
|
[4] |
MONJEZI M, JAMAATI H. The effects of face mask specifications on work of breathing and particle filtration efficiency[J]. Medical Engineering & Physics, 2021, 98: 36-43.
|
[5] |
张珈旗, 董忠红. 基于流场特性数值模拟的袋式除尘器关键结构设计研究综述[J]. 中国环境科学, 2022, 42(06): 2530-2540. doi: 10.3969/j.issn.1000-6923.2022.06.006
|
[6] |
邢奕, 王骢, 路培, 等. 有序介孔材料过滤脱除纳米颗粒物[J]. 环境科学, 2016, 37(12): 4538-4544. doi: 10.13227/j.hjkx.201606079
|
[7] |
ZHANG L, ZHENG Q, GE X, et al. Preparation of Nylon-6 micro-nanofiber composite membranes with 3D uniform gradient structure for high-efficiency air filtration of ultrafine particles[J]. Separation and Purification Technology, 2023, 308: 122921. doi: 10.1016/j.seppur.2022.122921
|
[8] |
朱辉, 杨会, 付海明, 等. 椭圆纤维过滤压降与惯性捕集效率数值分析[J]. 中国环境科学, 2019, 39(2): 565-573. doi: 10.3969/j.issn.1000-6923.2019.02.015
|
[9] |
付群飞, 房杰, 时杰, 等. 纤维种类对纤维束过滤器除尘性能的影响[J]. 环境工程学报, 2019, 13(3): 701-707. doi: 10.12030/j.cjee.201809079
|
[10] |
WANG L, YU L E, CHUNG T. Effects of relative humidity, particle hygroscopicity, and filter hydrophilicity on filtration performance of hollow fiber air filters[J]. Journal of Membrane Science, 2020, 595: 117561. doi: 10.1016/j.memsci.2019.117561
|
[11] |
YANG S, LEE W M G, HUANG H L, et al. Aerosol penetration properties of an electret filter with submicron aerosols with various operating factors[J]. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(1): 51-57.
|
[12] |
YANG Y, LI M, HOU S, et al. Hybridization of activated carbon fiber cloth with electrospun nanofibers for particle filtration[J]. New Carbon Materials, 2022, 37(4): 716-723. doi: 10.1016/S1872-5805(22)60598-5
|
[13] |
王晓明. 烟气温度和湿度对水泥磨袋式除尘器的影响[J]. 广东化工, 2019, 46(17): 75-77. doi: 10.3969/j.issn.1007-1865.2019.17.034
|
[14] |
KHIROUNI N, CHARVET A, THOMAS D, et al. Regeneration of dust filters challenged with metallic nanoparticles: Influence of atmospheric aging[J]. Process Safety and Environmental Protection, 2020, 138: 1-8. doi: 10.1016/j.psep.2020.02.040
|
[15] |
王辉. PPS滤料老化与耐久性实验研究[D]. 长春: 东北大学, 2011.
|
[16] |
BOUDHAN R, JOUBERT A, DURÉCU S, et al. Influence of air humidity on particle filtration performance of a pulse-jet bag filter[J]. Journal of Aerosol Science, 2019, 130: 1-9. doi: 10.1016/j.jaerosci.2019.01.002
|
[17] |
RIBEYRE Q, CHARVET A, VALLIÈRES C, et al. Impact of relative humidity on a nanostructured filter cake-Experimental and modelling approaches[J]. Chemical Engineering Science, 2017, 161: 109-116. doi: 10.1016/j.ces.2016.12.013
|
[18] |
JOUBERT A, LABORDE J C, BOUILLOUX L, et al. Modelling the pressure drop across HEPA filters during cake filtration in the presence of humidity[J]. Chemical Engineering Journal, 2011, 166(2): 616-623. doi: 10.1016/j.cej.2010.11.033
|
[19] |
KIM C S, BAO L, OKUYAMA K, et al. Filtration efficiency of a fibrous filter for nanoparticles[J]. Journal of Nanoparticle Research, 2006, 8(2): 215-221. doi: 10.1007/s11051-005-9017-x
|
[20] |
MIGUEL A F. Effect of air humidity on the evolution of permeability and performance of a fibrous filter during loading with hygroscopic and non-hygroscopic particles[J]. Journal of Aerosol Science, 2003, 34(6): 783-799. doi: 10.1016/S0021-8502(03)00027-2
|
[21] |
TANG M, CHEN S, CHANG D, et al. Filtration efficiency and loading characteristics of PM2.5 through composite filter media consisting of commercial HVAC electret media and nanofiber layer[J]. Separation and Purification Technology, 2018, 198: 137-145. doi: 10.1016/j.seppur.2017.03.040
|
[22] |
NOVICK V J, MONSON P R, ELLISON P E. The effect of solid particle mass loading on the pressure drop of HEPA filters[J]. Journal of Aerosol Science, 1992, 23(6): 657-665. doi: 10.1016/0021-8502(92)90032-Q
|
[23] |
PEI C, OU Q, PUI D Y H. Effect of relative humidity on loading characteristics of cellulose filter media by submicrometer potassium chloride, ammonium sulfate, and ammonium nitrate particles[J]. Separation and Purification Technology, 2019, 212: 75-83. doi: 10.1016/j.seppur.2018.11.009
|
[24] |
JOUBERT A, LABORDE J C, BOUILLOUX L, et al. Influence of humidity on clogging of flat and pleated HEPA filters[J]. Aerosol Science & Technology, 2010, 44(12): 1065-1076.
|
[25] |
MONTGOMERY J F, ROGAK S N, GREEN S I, et al. Structural change of aerosol particle aggregates with exposure to elevated relative humidity[J]. Environmental Science & Technology, 2015, 49(20): 12054-12061.
|
[26] |
LIU J, PUI D Y H, WANG J. Removal of airborne nanoparticles by membrane coated filters[J]. Science of The Total Environment, 2011, 409(22): 4868-4874. doi: 10.1016/j.scitotenv.2011.08.011
|
[27] |
CHANG D, CHEN S, FOX A R, et al. Penetration of Sub-50 nm nanoparticles through electret HVAC filters used in residence[J]. Aerosol Science and Technology, 2015, 49(10): 966-976. doi: 10.1080/02786826.2015.1086723
|