[1] 徐圣东, 周金洋, 王丽, 等. 猴头菌和金针菇漆酶对不同染料的降解[J]. 菌物学报, 2021, 40(6): 1525-1537.
[2] 陈智超, 陈坤, 杨承峰, 等. 磁混凝工艺在山东某污水处理厂提标改造中的应用[J]. 工业水处理, 2023, 43(3): 181-185.
[3] 陈新. 阴离子聚丙烯酰胺P(AM-IA-AMPS)的制备及应用研究[D]. 重庆: 重庆大学, 2019.
[4] 刘汝鹏, 宋依辉, 陈飞勇, 等. 水动力传质在臭氧氧化水处理工艺的研究进展[J]. 净水技术, 2023, 42(2): 14-22.
[5] GUO H, LI Z, XIANG L, et al. Efficient removal of antibiotic thiamphenicol by pulsed discharge plasma coupled with complex catalysis using nanocomposites[J]. Journal of Hazardous Materials, 2021, 403: 123673.
[6] HU L, WANG P, LIU G, et al. Catalytic degradation of p-nitrophenol by magnetically recoverable Fe3O4 as a persulfate activator under microwave irradiation[J]. Chemosphere, 2020, 240: 124971-124977.
[7] 冯华良, 毛文龙, 王晓君, 等. 不同臭氧催化氧化体系处理老龄垃圾渗滤液的效果及能耗分析[J]. 环境工程学报, 2020, 14(10): 2689-2700.
[8] 刘汝鹏, 张震, 宋依辉, 等. 基于臭氧的复合工艺处理医药废水研究进展[J]. 工业水处理, 2022, 42(5): 41-49.
[9] 刘东坡, 陈伟锐, 王静, 等. 铁锌共掺杂MCM-41构建双酸性中心及其催化臭氧化布洛芬[J]. 环境工程学报, 2022, 16(9): 2850-2861.
[10] 刘汝鹏, 张震, 孙翠珍, 等. 非均相催化臭氧化水中药物与个人护理品的研究进展[J]. 精细化工, 2022, 39(3): 469-479.
[11] 张震, 刘汝鹏, 孙翠珍, 等. 铁基材料协同活化过硫酸盐研究进展[J]. 环境科学与技术, 2022, 45(9): 169-180.
[12] 谭凤训, 陈永凯, 王榕, 等. g-C3N4/PDS光催化降解阿特拉津的效能及机理研究[J]. 中国给水排水, 2023, 39(1): 91-98.
[13] AMR S, AZIZ H A, ADLAN M N. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process[J]. Waste Management, 2013, 33(6): 1434-1441.
[14] WEN G, QIANG C, FENG Y, et al. Bromate formation during the oxidation of bromide-containing water by ozone/peroxymonosulfate process: Influencing factors and mechanisms[J]. Chemical Engineering Journal, 2018, 352: 316-324.
[15] YIN R, GUO W, ZHOU X, et al. Enhanced sulfamethoxazole ozonation based on magnetic Fe3O4 nanoparticles by noble-metal-free catalysis: Catalytic performance and degradation mechanism[J]. RSC Advances, 2016, 6(23): 19265-19270.
[16] QI F, CHU W, XU B. Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: The reaction and transformation[J]. Chemical Engineering Journal, 2015, 262: 552-562.
[17] ZHENG H, DU J, ZHONG H, et al. Enhanced persulfate activation by sulfur-modified Fe3O4 composites for atrazine degradation: Performance and mechanism[J]. Process Safety and Environmental Protection, 2023, 170: 1052-1065.
[18] BAI Z, YANG Q, WANG J. Catalytic ozonation of sulfamethazine using Ce0.1Fe 0.9OOH as catalyst: Mineralization and catalytic mechanisms[J]. Chemical Engineering Journal, 2016, 300: 169-176.
[19] BAI Z Y, YANG Q, WANG J L. Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid[J]. International Journal of Environmental Science and Technology, 2015, 13: 483-492.
[20] 刘静, 杨璐冰, 李晨, 等. ML-WO3/TiO2异质结的制备及其对罗丹明B的光催化降解[J]. 精细化工, 2022, 39(12): 2456-2466.
[21] ABDI M, BALAGABRI M, KARIMI H, et al. Degradation of crystal violet (CV) from aqueous solutions using ozone, peroxone, electroperoxone, and electrolysis processes: A comparison study[J]. Applied Water Science, 2020, 10(7): 1-10.
[22] CASTRO J, PAZ S, MENA N, et al. Evaluation of heterogeneous catalytic ozonation process for diclofenac degradation in solutions synthetically prepared[J]. Environmental Science and Pollution Research, 2019, 26(5): 4488-4497.
[23] GUO W, REN N, WANG X, et al. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology[J]. Bioresource Technology, 2009, 100(3): 1192-1196.
[24] GRCIC I, VUJEVIC D, AEPCIC J, et al. Minimization of organic content in simulated industrial wastewater by Fenton type processes: A case study[J]. Journal of Hazardous Materials, 2009, 170(2): 954-961.
[25] ZINATIZADEH A, MOHAMED A R, ABDULLAH A Z, et al. Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM)[J]. Water Research, 2006, 40(17): 3193-3208.
[26] MICHAELIS M, LEOPOLD C S. A measurement system analysis with design of experiments: Investigation of the adhesion performance of a pressure sensitive adhesive with the probe tack test[J]. International Journal of Pharmaceutics, 2015, 496(2): 448-456.
[27] KHATAEE A R, FATHINIA R, ABER R, et al. Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: Intermediates identification[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 886-897.
[28] CHRISTIE T C, SUNDARAMURTHY J, KALAIVANI M. Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22: 12198-12204.
[29] TRPKOV D, PANIAN M, KOPANJA L, et al. Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures[J]. Applied Surface Science, 2018, 457: 427-438.
[30] KACZMARCZYK J, ZASADA F, JANAS J, et al. Thermodynamic stability, redox properties, and reactivity of Mn3O4, Fe3O4, and Co3O4 model catalysts for N2O decomposition: Resolving the origins of steady turnover[J]. ACS Catalysis, 2016, 6(2): 1235-1246.
[31] LIN X, WANG X, ZHOU Q, et al. Magnetically recyclable MoS2/Fe3O4 hybrid composite as visible light responsive photocatalyst with enhanced photocatalytic performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1673-1682.
[32] XIAO F, WANG Y, XIE X, et al. Preparation of Fe/C-Mt composite catalyst and ofloxacin removal by peroxymonosulfate activation[J]. Separation and Purification Technology, 2022, 298: 121548.
[33] KREHULA S, MUSIC S, SKOKO Z, et al. The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media[J]. Journal of Alloys and Compounds, 2006, 420(1): 260-268.