[1] |
SUN Y, ZHOU Q, XU Y, et al. Phytoremediation for co-contaminated soils of benzo [a] pyrene (B [a] P) and heavy metals using ornamental plant Tagetes patula[J]. Journal of Hazardous Materials, 2011, 186(2/3): 2075-2082.
|
[2] |
ZHANG Z, RENGEL Z, CHANG H, et al. Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs)[J]. Geoderma, 2012, 175: 1-8.
|
[3] |
YUAN X, XUE N, HAN Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years[J]. Journal of Environmental Sciences, 2021, 101: 217-226. doi: 10.1016/j.jes.2020.08.013
|
[4] |
YANG W, WANG S, ZHOU H, et al. Combined amendment reduces soil Cd availability and rice Cd accumulation in three consecutive rice planting seasons[J]. Journal of Environmental Sciences, 2022, 111: 141-152. doi: 10.1016/j.jes.2021.03.027
|
[5] |
IRSHAD M K, CHEN C, NOMAN A, et al. Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system[J]. Chemosphere, 2020, 242: 125152. doi: 10.1016/j.chemosphere.2019.125152
|
[6] |
TANG B, XU H, SONG F, et al. Effect of biochar on immobilization remediation of Cd- contaminated soil and environmental quality[J]. Environmental Research, 2022, 204: 111840. doi: 10.1016/j.envres.2021.111840
|
[7] |
曾海岑, 杨启豪, 潘素, 等. 钝化材料应用于稻田土壤镉污染治理的研究进展[J]. 中国资源综合利用, 2022, 40(8): 111-114. doi: 10.3969/j.issn.1008-9500.2022.08.032
|
[8] |
YANG Y, ZHOU X, TIE B, et al. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil[J]. Chemosphere, 2017, 188: 148-156. doi: 10.1016/j.chemosphere.2017.08.140
|
[9] |
DU S, LU Q, LIU L, et al. Rhodococcus qingshengii facilitates the phytoextraction of Zn, Cd, Ni, and Pb from soils by Sedum alfredii Hance[J]. Journal of Hazardous Materials, 2022, 424: 127638. doi: 10.1016/j.jhazmat.2021.127638
|
[10] |
HAN R, DAI H, ZHAN J, et al. Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil[J]. Journal of Cleaner Production, 2019, 239: 118055. doi: 10.1016/j.jclepro.2019.118055
|
[11] |
李旭, 晁赢, 阎祥慧, 等. 植物修复技术治理农田土壤重金属污染的研究进展[J]. 河南农业科学, 2022, 51(12): 10-18. doi: 10.15933/j.cnki.1004-3268.2022.12.002
|
[12] |
李吉锋. 超累积植物修复矿区土壤重金属污染研究进展[J]. 矿产保护与利用, 2020, 40(5): 138-143.
|
[13] |
YANG W J, GU J F, ZHOU H, et al. Effect of three Napier grass varieties on phytoextraction of Cd-and Zn-contaminated cultivated soil under mowing and their safe utilization[J]. Environmental Science and Pollution Research, 2020, 27(14): 16134-16144. doi: 10.1007/s11356-020-07887-1
|
[14] |
丁国才, 段再燕, 王定石, 等. 试论耕地轮作休耕对农业持续性发展的意义[J]. 农业开发与装备, 2022(5): 88-90.
|
[15] |
李铁球, 戴力, 夏胜平, 等. 湖南省稻区种植结构调整研究Ⅲ——水稻改旱作[J]. 湖南农业科学, 2019(7): 105-109.
|
[16] |
涂鹏飞, 谭可夫, 陈璘涵, 等. 红叶甜菜-花生和油葵-花生轮作修复土壤Cd的能力[J]. 农业资源与环境学报, 2020, 37(4): 609-614.
|
[17] |
GUO J, ZHENG G, YANG J, et al. Safe utilization of cadmium-and lead-contaminated farmland by cultivating a winter rapeseed/maize rotation compared with two phytoextraction approaches[J]. Journal of Environmental Management, 2022, 304: 114306. doi: 10.1016/j.jenvman.2021.114306
|
[18] |
王新发, 王汉中, 等. 高油高产优质多抗油菜新品种中油杂19的选育与应用[J]. 中国科技成果, 2022, 23(15): 1.
|
[19] |
卞仕晶, 王华, 刘礼明. 油菜品种中油杂19的特征特性及高产优质栽培技术[J]. 现代农业科技, 2018, 730(20): 16-18.
|
[20] |
肖小军, 肖国滨, 郑伟, 等. 播期与密度对油蔬两用型油菜中油杂19产量的影响[J]. 土壤与作物, 2023, 12(1): 44-52.
|
[21] |
PAGE K, HARBOTTLE M, CLEALL P, et al. Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate[J]. Science of the Total Environment, 2014, 487: 260-271. doi: 10.1016/j.scitotenv.2014.04.021
|
[22] |
PUEYO M, LóPEZ-SáNCHEZ J, RAURET G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils[J]. Analytica Chimica Acta, 2004, 504(2): 217-226. doi: 10.1016/j.aca.2003.10.047
|
[23] |
ZHAO F, MCGRATH S, CROSLAND A. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP‐AES)[J]. Communications in Soil Science and Plant Analysis, 1994, 25(3-4): 407-418. doi: 10.1080/00103629409369047
|
[24] |
YANG Y, LI H, PENG L, et al. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction[J]. Food Chemistry, 2016, 197: 482-488. doi: 10.1016/j.foodchem.2015.10.143
|
[25] |
DE MENEZES M L, JOHANN G, DIóRIO A, et al. Phenomenological determination of mass transfer parameters of oil extraction from grape biomass waste[J]. Journal of Cleaner Production, 2018, 176: 130-139. doi: 10.1016/j.jclepro.2017.12.128
|
[26] |
CHENG W Y, AKANDA J M H, NYAM K L. Kenaf seed oil: A potential new source of edible oil[J]. Trends in Food Science & Technology, 2016, 52: 57-65.
|
[27] |
SUBRAMANIAN R, SUBBRAMANIYAN P, AMEEN J N, et al. Double bypasses soxhlet apparatus for extraction of piperine from Piper nigrum[J]. Arabian Journal of Chemistry, 2016, 9: 537-540. doi: 10.1016/j.arabjc.2014.02.013
|
[28] |
ZHANG X, XIA H, LI Z, et al. Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource Technology, 2010, 101(6): 2063-2066. doi: 10.1016/j.biortech.2009.11.065
|
[29] |
冯刚, 王鑫, 白九元, 等. 油菜对Cd污染土壤的修复潜力分析[J]. 四川大学学报(自然科学版), 2018, 55(1): 172-178.
|
[30] |
LLORENT-MARTíNEZ E, ORTEGA-BARRALES P, FERNáNDEZ-DE CóRDOVA M, et al. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain[J]. Food Chemistry, 2011, 127(3): 1257-1262. doi: 10.1016/j.foodchem.2011.01.064
|
[31] |
MENDIL D, ULUöZLü Ö D, TUEZEN M, et al. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry[J]. Journal of Hazardous Materials, 2009, 165(1-3): 724-728. doi: 10.1016/j.jhazmat.2008.10.046
|
[32] |
LEI B, LI-CHAN E C, OOMAH B D, et al. Distribution of cadmium-binding components in flax (Linum usitatissimum L. ) seed[J]. Journal of Agricultural and Food Chemistry, 2003, 51(3): 814-821. doi: 10.1021/jf0209084
|
[33] |
葛一陈, 杨洋, 黎红亮, 等. 不同萃取剂对花生粕饼中重金属的去除效果[J]. 环境工程技术学报, 2020, 10(1): 112-117. doi: 10.12153/j.issn.1674-991X.20190053
|
[34] |
王鹏程, 胡鹏杰, 钟道旭, 等. 镉锌超积累植物伴矿景天产后鲜样快速处置技术[J]. 环境工程学报, 2017, 11(9): 5307-5312.
|
[35] |
张秋野, 胡鹏杰, 王鹏程, 等. 伴矿景天汁液中重金属形态及絮凝沉淀效果优化[J]. 环境工程学报, 2018, 12(2): 611-617.
|
[36] |
ZHOU J, CHEN L, PENG L, et al. Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use[J]. Chemosphere, 2020, 247: 125856. doi: 10.1016/j.chemosphere.2020.125856
|
[37] |
CAO X, MA L, SHIRALIPOUR A, et al. Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pteris vittata L[J]. Environmental Science and Pollution Research, 2010, 17: 586-594. doi: 10.1007/s11356-009-0204-7
|
[38] |
GHOSH M, SINGH S. A review on phytoremediation of heavy metals and utilization of it’s by products[J]. Asian J Energy Environ, 2005, 6(4): 18.
|
[39] |
张杰. 超积累植物东南景天Cd耐性和积累的分子机制[D]. 杭州, 浙江大学, 2015
|
[40] |
CHARDONNENS A N, TEN BOOKUM W M, KUIJPER L D, et al. Distribution of cadmium in leaves of cadmium tolerant and sensitive ecotypes of Silene vulgaris[J]. Physiologia Plantarum, 1998, 104(1): 75-80. doi: 10.1034/j.1399-3054.1998.1040110.x
|
[41] |
史新杰, 李卓, 庄文化, 等. 油菜对土壤重金属Cd抗性的研究进展[J]. 中国农学通报, 2017, 33(14): 81-86.
|
[42] |
曹雪莹, 谭长银, 蔡润众, 等. 植物轮作模式对镉污染农田的修复潜力[J]. 农业环境科学学报, 2022, 41(4): 765-773.
|