[1] |
李佳斌. 北京某染料厂污染地块土壤和地下水6种氯苯类化合物的分布特征及迁移转化分析[J]. 环境工程学报, 2022, 16(7): 2296-2307.
|
[2] |
孟宪荣, 许伟, 张建荣. 化工污染场地氯苯分布特征[J]. 土壤, 2019, 51(6): 1144-1150.
|
[3] |
张婉莹. 基于EVS的上海某化工污染场地中1, 4-二氯苯空间分布模拟研究[J]. 环境卫生工程, 2021, 29(3): 31-38.
|
[4] |
周文敏, 傅德黔, 孙宗光. 水中优先控制污染物黑名单[J]. 中国环境监测, 1990(4): 1-3. doi: 10.19316/j.issn.1002-6002.1990.04.001
|
[5] |
刘乐, 张国良, 王芳, 等. 氯苯类化合物污染现状及其修复技术研究进展[J]. 湖北农业科学, 2022, 61(5): 91-97. doi: 10.14088/j.cnki.issn0439-8114.2022.05.018
|
[6] |
刘小宁. 利用热活化过硫酸盐修复氯苯污染地下水的研究[D]. 硕士, 华东理工大学, 2013.
|
[7] |
王继鹏, 虞敏达, 蔡小波, 等. Fe~(2+)活化过硫酸钠原位修复氯苯污染地下水[J]. 环境工程学报, 2016, 10(3): 1276-1280.
|
[8] |
侯德义. 我国工业场地地下水污染防治十大科技难题[J]. 环境科学研究, 2022, 35(9): 2015-2025.
|
[9] |
US EPA, Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites[S]. U. S. Environmental Protection Agency, Washington, DC, EPA 20460.
|
[10] |
李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(3): 1185-1193.
|
[11] |
US EPA. Superfund Remedy Report 17th Edition[R]. EPA-542-R-23-001 2023, Office of Land and Emergency Management.
|
[12] |
QIAO W, LUO F, LOMHEIM L, MACK E E, et al. Natural Attenuation and Anaerobic Benzene Detoxification Processes at a Chlorobenzene-Contaminated Industrial Site Inferred from Field Investigations and Microcosm Studies[J]. Environmental Science & Technology, 2018, 52(1): 22-31.
|
[13] |
FAN T, YANG M, LI Q, et al. A new insight into the influencing factors of natural attenuation of chlorinated hydrocarbons contaminated groundwater: A long-term field study of a retired pesticide site[J]. Journal of Hazardous Materials, 2022, 439: 129595. doi: 10.1016/j.jhazmat.2022.129595
|
[14] |
范婷婷, 夏菲洋, 孔令雅, 等. 场地地下水中氯代甲烷烃自然衰减机制[J]. 环境工程学报, 2021, 15(12): 3934-3945. doi: 10.12030/j.cjee.202108083
|
[15] |
CHIU H Y, VERPOORT F, LIU J K, et al. Using intrinsic bioremediation for petroleum–hydrocarbon contaminated groundwater cleanup and migration containment: Effectiveness and mechanism evaluation[J]. Journal of the Taiwan Institute of Chemical Engineer, 2017, 72: 53-61. doi: 10.1016/j.jtice.2017.01.002
|
[16] |
LV H, SU X, WANG Y, et al. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site[J]. Chemosphere, 2018, 206: 293-301. doi: 10.1016/j.chemosphere.2018.04.171
|
[17] |
马欣程, 徐红霞, 孙媛媛, 等. 氯代烃污染场地生物自然衰减修复研究进展[J]. 中国环境科学, 2022, 42(11): 5285-5298. doi: 10.3969/j.issn.1000-6923.2022.11.035
|
[18] |
周睿, 赵勇胜, 任何军, 等. BTEX在地下环境中的自然衰减[J]. 环境科学, 2009, 30(9): 2804-612808. doi: 10.13227/j.hjkx.2009.09.002
|
[19] |
周艳, 姜登登, 孔令雅, 等. 典型农药污染场地地下水中苯系物监控自然衰减研究[J]. 环境科学学报, 2022, 42(7): 380-388. doi: 10.13671/j.hjkxxb.2021.0547
|
[20] |
国家质量监督检验检疫总局, 国家标准化管理委员会. 地下水质量标准: GB/T 14848-2017 [S]. 北京: 中国环境科学出版社, 2017.
|
[21] |
生态环境部. 地下水环境监测技术规范: HJ/T 164-2020 [S]. 北京: 中国环境出版集团, 2020.
|
[22] |
生态环境部. 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法: HJ 639-2012 [S]. 北京: 中国环境科学出版社, 2012.
|
[23] |
EDGAR, ROBERT C. UPARSE: highly accurate OTU sequences from microbial amplicon reads.[J]. Nature Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604
|
[24] |
LIU C, ZHAO D, MA W, et al. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp[J]. Applied microbiology and biotechnology, 2016, 100(3): 1421-1426. doi: 10.1007/s00253-015-7039-6
|
[25] |
黄先锋. 酸性条件下臭氧强化氧化缺电子芳香类和富电子胺类化合物的特性与机理[D]. 博士, 南京大学, 2016.
|
[26] |
刘芬, 魏东洋, 许振成, 等. 催化臭氧降解氯苯类化合物的研究进展[J]. 广东化工, 2009, 36(9): 62-63,99. doi: 10.3969/j.issn.1007-1865.2009.09.027
|
[27] |
王冠群. 地下水中1, 2, 4-三氯苯污染的化学修复研究[D]. 硕士, 南京大学, 2015.
|
[28] |
NING Z, ZHANG M, HE Z, et al. Spatial Pattern of Bacterial Community Diversity Formed in Different Groundwater Field Corresponding to Electron Donors and Acceptors Distributions at a Petroleum-Contaminated Site[J]. Water, 2018, 10(7): 842. doi: 10.3390/w10070842
|
[29] |
李坡. 活化过硫酸盐原位修复苯胺污染地下水研究[D]. 硕士, 常州大学, 2022.
|
[30] |
US EPA. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies[S]. United States Environmental Protection Agency, 2002.
|
[31] |
李岩云. 低渗透粘土介质中微生物介导的氯苯降解研究[D]. 武汉:中国地质大学, 2021.
|
[32] |
DONG W, ZHANG Y, LIN X, et al. Prediction of 1, 2, 4-trichlorobenzene natural attenuation in groundwater at a landfill in Kaifeng, China[J]. Environmental Earth Sciences, 2014, 72(3): 941-948. doi: 10.1007/s12665-014-3386-3
|
[33] |
DONG W H, ZHANG P, LIN X Y, et al. Natural attenuation of 1, 2, 4-trichlorobenzene in shallow aquifer at the Luhuagang's landfill site, Kaifeng, China[J]. Science of the Total Environment, 2015, 505: 216-222. doi: 10.1016/j.scitotenv.2014.10.002
|
[34] |
WIEDEMEIER T H, SWANSON M A, MOUTOUX D E, et al. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water[S]. United States Environmental Protection Agency, 1998.
|
[35] |
ZHANG M, GUO C, SHI C, et al. A Quantitative Redox Zonation Model for Developing Natural Attenuation-Based Remediation Strategy in Hydrocarbon-Contaminated Aquifers[J]. Journal of Cleaner Production, 2021, 290(8): 125743.
|
[36] |
郑昭贤, 苏小四, 王鼐, 等. 浅层地下水中氯代烷烃生物降解的地下水化学响应规律研究[J]. 地球学报, 2014, 35(2): 230-238. doi: 10.3975/cagsb.2014.02.16
|
[37] |
罗俊鹏, 赵一澍, 廖晓勇, 等. 化学预氧化-生物强化-生物刺激对土壤中菲降解的联合效应[J]. 环境工程学报, 2019, 13(10): 2521-2529. doi: 10.12030/j.cjee.201902033
|
[38] |
AULENTA F, MAJONE M, TANDOI V, Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions[J]. Journal of Chemical Technology And Biotechnology, 2006, 81: 1463-1474.
|
[39] |
SUTTON N B, GROTENHUIS J T C, LANGENHOFF A A M, et al. Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies[J]. Journal of Soils And Sediments, 2011, 11: 129-140. doi: 10.1007/s11368-010-0272-9
|
[40] |
甘平, 樊耀波, 王敏健. 氯苯类化合物的生物降解[J]. 环境科学, 2001(3): 93-96. doi: 10.3321/j.issn:0250-3301.2001.03.020
|
[41] |
MULLER T A, WERLEN C, SPAIN J, et al. Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia[J]. Environmental Microbiology, 2003, 5(3): 1462-2920.
|
[42] |
HAIGLER B E, PETTIGREW C A, SPAIN J C. Biodegradation of Mixtures of Substituted Benzenes by Pseudomonas sp. strain JS150[J]. Applied and Environmental Microbiology, 1992, 58(7): 2237-2244. doi: 10.1128/aem.58.7.2237-2244.1992
|
[43] |
BALABEN N, YANKELZON I, ADAR E, et al. The spatial distribution of the microbial community in a contaminated aquitard below an industrial zone[J]. Water, 2019, 11(10): 2128. doi: 10.3390/w11102128
|
[44] |
ZOHRE K and JIM C S. Biodegradation of Chlorobenzene, 1, 2-Dichlorobenzene, and 1, 4-Dichlorobenzene in the Vadose Zone[J]. Environmental Science & Technology, 2013, 47: 3846-6854.
|