[1] |
BARBER O W, HARTMANN E M. Benzalkonium chloride: A systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies [J]. Critical Reviews in Environmental Science and Technology, 2022, 52(15): 2691-2719. doi: 10.1080/10643389.2021.1889284
|
[2] |
KAHRILAS G A, BLOTEVOGEL J, STEWART P S, et al. Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity [J]. Environmental Science & Technology, 2015, 49(1): 16-32.
|
[3] |
HUANG N, WANG W L, XU Z B, et al. A study of synergistic oxidation between ozone and chlorine on benzalkonium chloride degradation: Reactive species and degradation pathway [J]. Chemical Engineering Journal, 2020, 382: 122856. doi: 10.1016/j.cej.2019.122856
|
[4] |
CARBAJO J B, PETRE A L, ROSAL R, et al. Ozonation as pre-treatment of activated sludge process of a wastewater containing benzalkonium chloride and NiO nanoparticles [J]. Chemical Engineering Journal, 2016, 283: 740-749. doi: 10.1016/j.cej.2015.08.001
|
[5] |
LAVORGNA M, RUSSO C, D'ABROSCA B, et al. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems [J]. Environmental Pollution, 2016, 210: 34-39. doi: 10.1016/j.envpol.2015.11.042
|
[6] |
YU X B, KAMALI M, VANAKEN P, et al. Advanced oxidation of benzalkonium chloride in aqueous media under ozone and ozone/UV systems - Degradation kinetics and toxicity evaluation [J]. Chemical Engineering Journal, 2021, 413: 127431. doi: 10.1016/j.cej.2020.127431
|
[7] |
MATARACI-KARA E, ATAMAN M, YILMAZ G, et al. Evaluation of antifungal and disinfectant-resistant Candida species isolated from hospital wastewater [J]. Archives of Microbiology, 2020, 202(9): 2543-2550. doi: 10.1007/s00203-020-01975-z
|
[8] |
MOHAPATRA S, LIN Y, GOH S G, et al. Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance [J]. Journal of Hazardous Materials, 2023, 445: 130393. doi: 10.1016/j.jhazmat.2022.130393
|
[9] |
HUANG N, WANG T, WANG W L, et al. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation [J]. Water Research, 2017, 114: 246-253. doi: 10.1016/j.watres.2017.02.015
|
[10] |
MIKLOS D B, HARTL R, MICHEL P, et al. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents [J]. Water Research, 2018, 136: 169-179. doi: 10.1016/j.watres.2018.02.044
|
[11] |
SRITHEP S, PHATTARAPATTAMAWONG S. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3) [J]. Chemosphere, 2017, 176: 25-31. doi: 10.1016/j.chemosphere.2017.02.107
|
[12] |
WACŁAWEK S, LUTZE H V, GRÜBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review [J]. Chemical Engineering Journal, 2017, 330: 44-62. doi: 10.1016/j.cej.2017.07.132
|
[13] |
LEE M Y, WANG W L, WU Q Y, et al. Degradation of dodecyl dimethyl benzyl ammonium chloride (DDBAC) as a non-oxidizing biocide in reverse osmosis system using UV/persulfate: Kinetics, degradation pathways, and toxicity evaluation [J]. Chemical Engineering Journal, 2018, 352: 283-292. doi: 10.1016/j.cej.2018.04.174
|
[14] |
HONG J M, XIA Y F, ZHANG Q, et al. Oxidation of benzalkonium chloride in aqueous solution by S2O82−/Fe2+ process: Degradation pathway, and toxicity evaluation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 230-239. doi: 10.1016/j.jtice.2017.06.005
|
[15] |
ZHANG Q, XIA Y F, HONG J M. Mechanism and toxicity research of benzalkonium chloride oxidation in aqueous solution by H2O2/Fe2+ process [J]. Environmental Science and Pollution Research, 2016, 23(17): 17822-17830. doi: 10.1007/s11356-016-6986-5
|
[16] |
XIA T L, LIN Y C, LI W Z, et al. Photocatalytic degradation of organic pollutants by MOFs based materials: A review [J]. Chinese Chemical Letters, 2021, 32(10): 2975-2984. doi: 10.1016/j.cclet.2021.02.058
|
[17] |
MAHMOODI N M, ABDI J, OVEISI M, et al. Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling [J]. Materials Research Bulletin, 2018, 100: 357-366. doi: 10.1016/j.materresbull.2017.12.033
|
[18] |
YU J, XIONG W P, LI X, et al. Functionalized MIL-53(Fe) as efficient adsorbents for removal of tetracycline antibiotics from aqueous solution [J]. Microporous and Mesoporous Materials, 2019, 290: 109642. doi: 10.1016/j.micromeso.2019.109642
|
[19] |
EL ASMAR R, BAALBAKI A, ABOU KHALIL Z, et al. Iron-based metal organic framework MIL-88-A for the degradation of naproxen in water through persulfate activation [J]. Chemical Engineering Journal, 2021, 405: 126701. doi: 10.1016/j.cej.2020.126701
|
[20] |
WANG J M, WAN J Q, MA Y W, et al. Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation [J]. RSC Advances, 2016, 6(113): 112502-112511. doi: 10.1039/C6RA24429G
|
[21] |
DAOUD F, PELZER D, ZUEHLKE S, et al. Ozone pretreatment of process waste water generated in course of fluoroquinolone production [J]. Chemosphere, 2017, 185: 953-963. doi: 10.1016/j.chemosphere.2017.07.040
|
[22] |
VISWANATHAN V P, MATHEW S V, DUBAL D P, et al. Exploring the effect of morphologies of Fe(III) metal-organic framework MIL-88A(Fe) on the photocatalytic degradation of rhodamine B [J]. ChemistrySelect, 2020, 5(25): 7534-7542. doi: 10.1002/slct.202001670
|
[23] |
LIAO X Y, WANG F, WANG F, et al. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced fenton-like performance for phenol removal [J]. Applied Catalysis B: Environmental, 2019, 259: 118064. doi: 10.1016/j.apcatb.2019.118064
|
[24] |
LIN K Y A, CHANG H A, HSU C J. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water [J]. RSC Advances, 2015, 5(41): 32520-32530. doi: 10.1039/C5RA01447F
|
[25] |
LI Q W, LI L M, LONG X Y, et al. Rational design of MIL-88A(Fe)/Bi2WO6 heterojunctions as an efficient photocatalyst for organic pollutant degradation under visible light irradiation [J]. Optical Materials, 2021, 118: 111260. doi: 10.1016/j.optmat.2021.111260
|
[26] |
YU D Y, LI L B, WU M H, et al. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework [J]. Applied Catalysis B: Environmental, 2019, 251: 66-75. doi: 10.1016/j.apcatb.2019.03.050
|
[27] |
XUE B, DU L, JIN J S, et al. In situ growth of MIL-88A into polyacrylate and its application in highly efficient photocatalytic degradation of organic pollutants in water [J]. Applied Surface Science, 2021, 564: 150404. doi: 10.1016/j.apsusc.2021.150404
|
[28] |
YI X H, JI H D, WANG C C, et al. Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations [J]. Applied Catalysis B: Environmental, 2021, 293: 120229. doi: 10.1016/j.apcatb.2021.120229
|
[29] |
XU W T, MA L, KE F, et al. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye [J]. Dalton Transactions, 2014, 43(9): 3792-3798. doi: 10.1039/C3DT52574K
|
[30] |
CHEN X J, DAI Y Z, WANG X Y, et al. Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2, 4-dichlorophenol under visible light irradiation [J]. Journal of Hazardous Materials, 2015, 292: 9-18. doi: 10.1016/j.jhazmat.2015.01.032
|
[31] |
WANG D B, JIA F Y, WANG H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs [J]. Journal of Colloid and Interface Science, 2018, 519: 273-284. doi: 10.1016/j.jcis.2018.02.067
|
[32] |
FU H, SONG X X, WU L, et al. Room-temperature preparation of MIL-88A as a heterogeneous photo-Fenton catalyst for degradation of rhodamine B and bisphenol a under visible light [J]. Materials Research Bulletin, 2020, 125: 110806. doi: 10.1016/j.materresbull.2020.110806
|
[33] |
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ( OH/ O–in Aqueous Solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
|
[34] |
ZUO Z H, CAI Z L, KATSUMURA Y, et al. Reinvestigation of the acid–base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants [J]. Radiation Physics and Chemistry, 1999, 55(1): 15-23. doi: 10.1016/S0969-806X(98)00308-9
|
[35] |
LE V T, TRAN V A, TRAN D L, et al. Fabrication of Fe3O4/CuO@C composite from MOF-based materials as an efficient and magnetically separable photocatalyst for degradation of ciprofloxacin antibiotic [J]. Chemosphere, 2021, 270: 129417. doi: 10.1016/j.chemosphere.2020.129417
|
[36] |
GAO Y X, YU G, LIU K, et al. Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework [J]. Chemical Engineering Journal, 2017, 330: 157-165. doi: 10.1016/j.cej.2017.06.139
|
[37] |
WANG J Q, QIAN Q R, CHEN Q H, et al. Significant role of carbonate radicals in tetracycline hydrochloride degradation based on solar light-driven TiO2-seashell composites: Removal and transformation pathways [J]. Chinese Journal of Catalysis, 2020, 41(10): 1511-1521. doi: 10.1016/S1872-2067(19)63525-4
|
[38] |
XIE A T, CUI J Y, YANG J, et al. Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes [J]. Applied Catalysis B: Environmental, 2020, 264: 118548. doi: 10.1016/j.apcatb.2019.118548
|
[39] |
YANG Y, LU X L, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate [J]. Water Research, 2017, 118: 196-207. doi: 10.1016/j.watres.2017.03.054
|