[1] |
BACELO H, PINTOR A M A, SANTOS S C R et al. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water[J]. Chemical Engineering Journal, 2020, 381: 122566. doi: 10.1016/j.cej.2019.122566
|
[2] |
任树鹏, 齐宇彤, 石瑶, 等. 层状双氢氧化物负载生物炭对磷酸盐的吸附性能研究进展[J]. 环境化学, 2023, 42(2): 575-584. doi: 10.7524/j.issn.0254-6108.2021101904
REN S P, QI Y T, SHI Y, et al. The adsorption performance of layered double hydroxides functionalized biochar on phosphate: Research advances[J]. Environmental Chemistry, 2023, 42(2): 575-584(in Chinese). doi: 10.7524/j.issn.0254-6108.2021101904
|
[3] |
张巧颖, 杜瑛珣, 罗春燕, 等. 镧改性膨润土钝化湖泊中的磷及其生态风险的研究进展[J]. 湖泊科学, 2019, 31(6): 1499-1509 doi: 10.18307/2019.0620
ZHANG Q Y, DU Y X, LUO C Y, et al. Advances in researches on phosphorus immobilization by lanthanum modified bentonite in lakes and its ecological risk[J]. Journal of Lake Sciences, 2019, 31(6): 1499-1509(in Chinese). doi: 10.18307/2019.0620
|
[4] |
马鑫雨, 杨盼, 张曼, 等. 湖泊沉积物磷钝化材料的研究进展[J]. 湖泊科学, 2022, 34(1): 1-17. doi: 10.18307/2022.0101
MA X Y, YANG P, ZHANG M, et al. Advances in researches on phosphorous inactivation materials in lake sediment[J]. Journal of Lake Sciences, 2022, 34(1): 1-17(in Chinese). doi: 10.18307/2022.0101
|
[5] |
TAMPIERI A, RUSSO C, MAROTTA R, et al. Microwave-assisted condensation of bio-based hydroxymethylfurfural and acetone over recyclable hydrotalcite-related materials[J]. Applied Catalysis B: Environmental, 2021, 282: 119599. doi: 10.1016/j.apcatb.2020.119599
|
[6] |
KANEDA K, MIZUGAKI T. Design of high-performance heterogeneous catalysts using hydrotalcite for selective organic transformations[J]. Green Chemistry, 2019, 21(6): 1361-1389. doi: 10.1039/C8GC03391A
|
[7] |
SONG Y, BEAUMONT S K, ZHANG X, et al. Catalytic applications of layered double hydroxides in biomass valorisation[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 22(11): 29-38.
|
[8] |
SARDAR B, SRIMANI D. Concept and progress on the de(hydrogenation) and hydrogenation reactions using transition metal integrated layered double hydroxides (LDHs). Tetrahedron, 2023, 138: 133414.
|
[9] |
蒋柱武, 吴梦帆, 李登胜, 等. 层状双金属氢氧化物吸附剂的功能化改性策略[J]. 精细化工, 2023, 40(6): 1239-1252. doi: 10.13550/j.jxhg.20220846
JIANG Z W, WU M F, LI D S, et al. Functional modification strategies of layered double-metal hydroxide adsorbents[J]. Fine Chemicals, 2023, 40(6): 1239-1252(in Chinese). doi: 10.13550/j.jxhg.20220846
|
[10] |
杨靖, 范议议, 王赛娣, 等. 二维层状双金属氢氧化物在去除磷酸盐中的应用[J]. 化工进展, 2022, 41(7): 3689-3706.
YANG J, FAN Y Y, WANG S D, et al. Layered double hydroxide(LDH) for phosphate removal[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3689-3706(in Chinese).
|
[11] |
HE H J, LIU L, LI Q, et al. Feasibility of using Mg/Al-based layered double hydroxides as an inactivating agent to interrupt phosphorus release from contaminated agricultural drainage ditch sediments[J]. Ecotoxicology and Environmental Safety, 2021, 223: 112599. doi: 10.1016/j.ecoenv.2021.112599
|
[12] |
WU Y H, SONG L, SHI M F, et al. Ca/Fe-layered double hydroxide-zeolite composites for the control of phosphorus pollution in sediments: Performance, mechanisms, and microbial community response[J]. Chemical Engineering Journal, 2022, 450: 138277. doi: 10.1016/j.cej.2022.138277
|
[13] |
NGUYEN-QUANGQ M, AZZOLINA-JURY F, SAMOJEDEN B, et al. On the influence of the preparation routes of NiMgAl-mixed oxides derived from hydrotalcite on their CO2 methanation catalytic activities[J]. International Journal of Hydrogen Energy, 2022, 47(89): 37783-37791. doi: 10.1016/j.ijhydene.2022.08.278
|
[14] |
DAI R R, ESER B E, GUO Z, Beyond flower-like structure – The synergy within Pd/Ni-Al hydrotalcite for base-free oxidation of benzyl alcohols[J]. Applied Catalysis A: General, 2021, 610: 117972.
|
[15] |
GUO C Y, SHEN S G, LI M N, et al. Rapid in situ synthesis of MgAl-LDH on η-Al2O3 for efficient hydrolysis of urea in wastewater[J]. Journal of Catalysis, 2021, 395: 54-62. doi: 10.1016/j.jcat.2020.12.024
|
[16] |
NASEEM S, GEVERS B, BOLDT R, et al. Comparison of transition metal (Fe, Co, Ni, Cu, and Zn) containing tri-metal layered double hydroxides (LDHs) prepared by urea hydrolysis[J]. RSC Advances, 2019, 9(6): 3030-3040. doi: 10.1039/C8RA10165E
|
[17] |
QUISPE-DOMINGUEZ R, NASEEM S, LEUTERITZ A, et al. Synthesis and characterization of MgAl-DBS LDH/PLA composite by sonication-assisted masterbatch (SAM) melt mixing method[J]. RSC Advances, 2019, 9(2): 658-667. doi: 10.1039/C8RA08780F
|
[18] |
YANG R, ZHOU Y M, XING Y G, et al. Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media[J]. Applied Catalysis B: Environmental, 2019, 253(4): 131-139.
|
[19] |
LIU S X, ZHANG H W, HU E L, et al. Boosting oxygen evolution activity of NiFe-LDH using oxygen vacancies and morphological engineering[J]. Journal of Materials Chemistry A, 2021, 9(41): 23697-23702. doi: 10.1039/D1TA06263H
|
[20] |
SAKR A A E, ZAKI T, ELGABRYl O, et al. Enhanced CO2 capture from methane-stream using MII -Al LDH prepared by microwave-assisted urea hydrolysis[J]. Advanced Powder Technology, 2021, 32(11): 4096-4109. doi: 10.1016/j.apt.2021.09.016
|
[21] |
KUANG H, ZHANG H, LIU X, et al. Microwave-assisted synthesis of NiCo-LDH/graphene nanoscrolls composite for supercapacitor[J]. Carbon, 2022, 190: 57-67. doi: 10.1016/j.carbon.2021.12.097
|
[22] |
GANDAMALLA A, MANCHALA S, VERMA A, et al. Microwave-assisted synthesis of ZnAl-LDH/g-C3N4 composite for degradation of antibiotic ciprofloxacin under visible-light illumination[J]. Chemosphere, 2021, 283: 131182. doi: 10.1016/j.chemosphere.2021.131182
|
[23] |
ARSHAD F, MUNIR A, TAHIR A, et al. Microwave-assisted growth of spherical core-shell NiFe LDH@CuxO nanostructures for electrocatalytic water oxidation reaction[J]. International Journal of Hydrogen Energy, 2023, 48(12): 4719-4727. doi: 10.1016/j.ijhydene.2022.10.252
|
[24] |
YIN Z Z, HE R Z, ZHANG Y C, et al. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction[J]. Journal of Energy Chemistry, 2022, 69: 585-592. doi: 10.1016/j.jechem.2022.01.020
|
[25] |
JIANG K, LIU W J, LAI W, et al. NiFe layered double hydroxide/FeOOH heterostructure nanosheets as an efficient and durable bifunctional electrocatalyst for overall seawater splitting[J]. Inorganic Chemistry, 2021, 60(22): 17371-17378. doi: 10.1021/acs.inorgchem.1c02903
|
[26] |
CUI Q L, JIAO G J, ZHENG J Y, et al. Synthesis of a novel magnetic Caragana korshinskii biochar/Mg-Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions[J]. RSC Advances, 2019, 9(32): 18641-18651. doi: 10.1039/C9RA02052G
|
[27] |
SOKOL D, VIEIRA D E L, ZARKOV A, et al. Sonication accelerated formation of Mg-Al-phosphate layered double hydroxide via sol-gel prepared mixed metal oxides[J]. Scientific Reports, 2019, 9: 10419. doi: 10.1038/s41598-019-46910-5
|
[28] |
BODHANKAR P M, SARAWADE P B, SINGH G, et al. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting[J]. Journal of Materials Chemistry A, 2021, 9(6): 3180-3208. doi: 10.1039/D0TA10712C
|
[29] |
CANTRELL D G, GILLIE L J, LEE A F, et al. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis[J]. Applied Catalysis A: General, 2005, 287(2): 183-190. doi: 10.1016/j.apcata.2005.03.027
|
[30] |
YANG Z Z, WEI J J, ZENG G M, et al. A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2[J]. Coordination Chemistry Reviews, 2019, 386: 154-182. doi: 10.1016/j.ccr.2019.01.018
|
[31] |
LI J X, LI B, WANG J K, et al. Recent advances in layered double hydroxides and their derivatives for biomedical applications[J]. Acta Chimica Sinica, 2021, 79(3): 238-256. doi: 10.6023/A20090441
|
[32] |
SAHOO D P, DAS K K, MANSINGH S, et al. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis[J]. Coordination Chemistry Reviews, 2022, 469: 214666. doi: 10.1016/j.ccr.2022.214666
|
[33] |
ASHEKUZZAMAN S M, JIANG J Q. Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water[J]. Chemical Engineering Journal, 2014, 246: 97-105. doi: 10.1016/j.cej.2014.02.061
|
[34] |
AL JABERI M, MALLET M, GREENWELL H C et al. Using Ca-Fe layered double hydroxide transformation to optimise phosphate removal from waste waters[J]. Applied Clay Science, 2019, 182: 105281. doi: 10.1016/j.clay.2019.105281
|
[35] |
SEFTEL E M, CIOCARLAN R G, MICHIELSEN B, et al. Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides[J]. Applied Clay Science, 2018, 165: 234-246. doi: 10.1016/j.clay.2018.08.018
|
[36] |
ALMOJIL S F, OTHMAN M A. Screening different divalent and trivalent metals containing binary and ternary layered double hydroxides for optimum phosphate uptake[J]. Scientific Reports, 2019, 9(1): 15511. doi: 10.1038/s41598-019-52031-w
|
[37] |
YANG K, YAN L G, YANG Y M, et al. Adsorptive removal of phosphate by Mg-Al and Zn-Al layered double hydroxides: Kinetics, isotherms and mechanisms[J]. Separation and Purification Technology, 2014, 124: 36-42. doi: 10.1016/j.seppur.2013.12.042
|
[38] |
LUENGO C V, VOLPE M A, AVENA M J. High sorption of phosphate on Mg-Al layered double hydroxides: Kinetics and equilibrium[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4656-4662. doi: 10.1016/j.jece.2017.08.051
|
[39] |
YU Q Q, ZHENG Y Q, WANG Y P, et al. Highly selective adsorption of phosphate by pyromellitic acid intercalated ZnAl-LDHs: Assembling hydrogen bond acceptor sites[J]. Chemical Engineering Journal, 2015, 260: 809-817. doi: 10.1016/j.cej.2014.09.059
|
[40] |
ZHOU H G, TAN Y L, YANG Y M, et al. Application of FeMgMn layered double hydroxides for phosphate anions adsorptive removal from water[J]. Applied Clay Science, 2021, 200: 105903. doi: 10.1016/j.clay.2020.105903
|
[41] |
HALAJNIA A, OUSTAN S, NAJAFI N, et al. Adsorption-desorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide[J]. Applied Clay Science, 2013, 80/81: 305-312. doi: 10.1016/j.clay.2013.05.002
|
[42] |
CHENG X, HUANG X R, WANG X Z, et al. Influence of calcination on the adsorptive removal of phosphate by Zn-Al layered double hydroxides from excess sludge liquor[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 516-523.
|
[43] |
DAS J, PATRA B S, BALIARSINGH N, et al. Adsorption of phosphate by layered double hydroxides in aqueous solutions[J]. Applied Clay Science, 2006, 32(3/4): 252-260.
|
[44] |
HE H M, KANG H L, MA S L, et al. High adsorption selectivity of ZnAl layered double hydroxides and the calcined materials toward phosphate[J]. Journal of Colloid and Interface Science, 2010, 343(1): 225-231. doi: 10.1016/j.jcis.2009.11.004
|
[45] |
IFTEKHAR S, KUCUK M E, SRIVASTAVA V, et al. Application of zinc-aluminium layered double hydroxides for adsorptive removal of phosphate and sulfate: Equilibrium, kinetic and thermodynamic[J]. Chemosphere, 2018, 209: 470-479. doi: 10.1016/j.chemosphere.2018.06.115
|
[46] |
CHENG X, HUANG X R, WANG X Z, et al. Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 958-964.
|
[47] |
ASHEKUZZAMAN S M, JIANG J Q. Strategic phosphate removal/recovery by a re-usable Mg-Fe-Cl layered double hydroxide[J]. Process Safety and Environmental Protection, 2017, 107: 454-462. doi: 10.1016/j.psep.2017.03.009
|
[48] |
LIU T, CHEN Y X, YU Q L, et al. Effect of MgO, Mg-Al-NO3 LDH and calcined LDH-CO3 on chloride resistance of alkali activated fly ash and slag blends[J]. Construction and Building Materials, 2020, 250: 118865. doi: 10.1016/j.conbuildmat.2020.118865
|
[49] |
KAMEDA T, KURUTACH T, TAKAHASHI Y, et al. Thermal decomposition behavior of MnO2/Mg-Al layered double hydroxide after removal and recovery of acid gas[J]. Results in Chemistry, 2022, 4: 100310. doi: 10.1016/j.rechem.2022.100310
|
[50] |
MIYATA S. Physico-chemical properties of synthetic hydrotalcites in relation to composition[J]. Clays and Clay Minerals, 1980, 28(1): 50-56. doi: 10.1346/CCMN.1980.0280107
|
[51] |
BOLBOL H, FEKRI M, HEJAZI-MEHRIZI M. Layered double hydroxide-loaded biochar as a sorbent for the removal of aquatic phosphorus: Behavior and mechanism insights[J]. Arabian Journal of Geosciences, 2019, 12(16): 1-11.
|
[52] |
YANG F, ZHANG S S, SUN Y Q, et al. Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery[J]. Journal of Hazardous Materials, 2019, 365: 665-673. doi: 10.1016/j.jhazmat.2018.11.047
|
[53] |
LI R H, WANG J J, ZHOU B Y, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment, 2016, 559: 121-129. doi: 10.1016/j.scitotenv.2016.03.151
|
[54] |
ALAGHA O, MANZAR M S, ZUBAIR M, et al. Magnetic Mg-Fe/LDH intercalated activated carbon composites for nitrate and phosphate removal from wastewater: Insight into behavior and mechanisms[J]. Nanomaterials, 2020, 10(7): 1361. doi: 10.3390/nano10071361
|
[55] |
YIN H B, YANG P, KONG M, et al. Use of lanthanum/aluminum co-modified granulated attapulgite clay as a novel phosphorus (P) sorbent to immobilize P and stabilize surface sediment in shallow eutrophic lakes[J]. Chemical Engineering Journal, 2020, 385: 123395. doi: 10.1016/j.cej.2019.123395
|
[56] |
ONYANGO M S, KUCHAR D, KUBOTA M, et al. Adsorptive removal of phosphate ions from aqueous solution using synthetic zeolite[J]. Industrial & Engineering Chemistry Research, 2007, 46(3): 894-900.
|
[57] |
XIE J, WANG Z, LU S Y, et al. Removal and recovery of phosphate from water by lanthanum hydroxide materials[J]. Chemical Engineering Journal, 2014, 254: 163-170. doi: 10.1016/j.cej.2014.05.113
|
[58] |
YAN L G, XU Y Y, YU H Q, et al. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 244-250.
|
[59] |
HUANG W Y, YU X, TANG J P, et al. Enhanced adsorption of phosphate by flower-like mesoporous silica spheres loaded with lanthanum[J]. Microporous and Mesoporous Materials, 2015, 217: 225-232. doi: 10.1016/j.micromeso.2015.06.031
|
[60] |
KIZITO S, LUO H Z, WU S B, et al. Phosphate recovery from liquid fraction of anaerobic digestate using four slow pyrolyzed biochars: Dynamics of adsorption, desorption and regeneration[J]. Journal of Environmental Management, 2017, 201: 260-267. doi: 10.1016/j.jenvman.2017.06.057
|
[61] |
NUR T, JOHIR M A H, LOGANATHAN P, et al. Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1301-1307. doi: 10.1016/j.jiec.2013.07.009
|
[62] |
KÖSE T E, KıVANÇ B. Adsorption of phosphate from aqueous solutions using calcined waste eggshell[J]. Chemical Engineering Journal, 2011, 178: 34-39. doi: 10.1016/j.cej.2011.09.129
|
[63] |
LIN Z G, CHEN J. Magnetic Fe3O4@MgAl-LDH@La(OH)3 composites with a hierarchical core-shell structure for phosphate removal from wastewater and inhibition of labile sedimentary phosphorus release[J]. Chemosphere, 2021, 264(Pt 2): 128551.
|
[64] |
SONG K, ADAMS C J, BURGIN A J. Relative importance of external and internal phosphorus loadings on affecting lake water quality in agricultural landscapes[J]. Ecological Engineering, 2017, 108: 482-488. doi: 10.1016/j.ecoleng.2017.06.008
|
[65] |
吴俊麟, 林建伟, 詹艳慧, 等. 镁铁层状双金属氢氧化物对磷酸盐的吸附作用及对内源磷释放的控制效果及机制[J]. 环境科学, 2020, 41(1): 273-283. doi: 10.13227/j.hjkx.201907174
WU J L, LIN J W, ZHAN Y H, et al. Adsorption of phosphate on Mg/Fe layered double hydroxides(Mg/Fe-LDH) and use of Mg/Fe-LDH as an amendment for controlling phosphorus release from sediments[J]. Environmental Science, 2020, 41(1): 273-283(in Chinese). doi: 10.13227/j.hjkx.201907174
|
[66] |
WU J L, LIN J W, ZHAN Y H. Interception of phosphorus release from sediments using Mg/Fe-based layered double hydroxide (MF-LDH) and MF-LDH coated magnetite as geo-engineering tools[J]. The Science of the Total Environment, 2020, 739: 139749. doi: 10.1016/j.scitotenv.2020.139749
|
[67] |
WANG J F, CHEN J G, CHEN Q, et al. Assessment on the effects of aluminum-modified clay in inactivating internal phosphorus in deep eutrophic reservoirs[J]. Chemosphere, 2019, 215: 657-667. doi: 10.1016/j.chemosphere.2018.10.095
|
[68] |
JOBBÁGY M, REGAZZONI A E. Dissolution of nano-size Mg-Al-Cl hydrotalcite in aqueous media[J]. Applied Clay Science, 2011, 51(3): 366-369. doi: 10.1016/j.clay.2010.11.027
|
[69] |
DAI R R, LIU B G, ZHANG Y, et al. Copper-based ternary hydrotalcite as a catalyst for hydroxylation of phenolic compounds[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106390. doi: 10.1016/j.jece.2021.106390
|