[1] |
刘宏, 庞族族, 石林, 等. 光催化降解喹诺酮类抗生素的研究进展[EB/OL]. [2022-12-20].工业水处理, 1-4. https://kns.cnki.net/kcms/detail/12.1087.TQ.20220927.1504.001.html.
|
[2] |
杜玉海, 王晓云, 范增博, 等. rGO/MoS2-CN的制备及可见光催化降解磺胺类抗生素的性能研究[J]. 环境化学, 2022, 41(9): 3012-3021.
|
[3] |
廖洋, 鲁金凤, 曹轶群, 等. 光催化降解对抗生素藻类毒性效应影响研究进展[J]. 环境化学, 2021, 40(1): 111-120.
|
[4] |
阳春, 王瀚, 王琦, 等. 氨基改性磁性介孔硅对磺胺类抗生素的吸附研究[J]. 中国给水排水, 2022, 38(23): 123-128.
|
[5] |
刘路明, 高志敏, 邓兆雄, 等. 过硫酸盐的活化及其在氧化降解水中抗生素的机理和应用[J]. 环境化学, 2022, 41(5): 1702-1717.
|
[6] |
段彤, 曾小芸, 谈树成. MBR处理猪场废水过程中抗生素抗性基因的去除[J]. 环境工程, 2022, 40(4): 8-13.
|
[7] |
张帆, 刘晓娜, 李博, 等. 模拟日光下铌酸盐/钛酸纳米片催化降解水中环丙沙星[J]. 环境工程学报, 2022, 16(10): 3232-3242.
|
[8] |
杨天翔, 王银号, 张永伟, 等. 氧化钨纳米棒团簇的制备及电催化性能[J]. 无机化学学报, 2023, 39(2): 221-233.
|
[9] |
吴亮. CuWO4/WO3的制备及其对含油污泥的光催化氧化处理[J]. 化工环保, 2023, 43(1): 107-112.
|
[10] |
李厚芬, 薛帅, 曹雅洁, 等. 类单晶纳米片状WO3的制备及其光催化性能[J]. 中国环境科学, 2021, 41(4): 1615-1623.
|
[11] |
陈宝宁, 丁春华, 方岩雄, 等. Ag2O/WO3-SiO2气凝胶的制备及光催化性能研究[J]. 工业水处理, 2022, 43(2): 136-141.
|
[12] |
LIU X, JIN A, JIA Y, et al. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4[J]. Applied Surface Science, 2017, 405: 359-371. doi: 10.1016/j.apsusc.2017.02.025
|
[13] |
LING Y, DAI Y. Direct Z-scheme hierarchical WO3/BiOBr with enhanced photocatalytic degradation performance under visible light[J]. Applied Surface Science, 2020, 509: 145201.
|
[14] |
LI P, GUO J, JI X, et al. Construction of direct Z-scheme photocatalyst by the interfacial interaction of WO(3) and SiC to enhance the redox activity of electrons and holes[J]. Chemosphere, 2021, 282: 130866.
|
[15] |
ASLAM I, CAO C, TANVEER M, et al. A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants[J]. RSC Advances, 2015, 5(8): 6019-6026. doi: 10.1039/C4RA15847D
|
[16] |
GHOSH U, PAL A. Graphitic carbon nitride based Z scheme photocatalysts: Design considerations, synthesis, characterization and applications[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 383-408. doi: 10.1016/j.jiec.2019.07.014
|
[17] |
苏跃涵, 王盈霏, 张钱新, 等. 二维超薄g-C3N4的制备及其光催化性能研究[J]. 中国环境科学, 2017, 37(10): 3748-3757.
|
[18] |
YU Y, WANG C, LUO L, et al. An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation[J]. Chemical Engineering Journal, 2018, 334: 1869-1877. doi: 10.1016/j.cej.2017.11.133
|
[19] |
ZHAO Q, LIU S, CHEN S, et al. Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B[J]. Chemical Physics Letters, 2022, 805:139908.
|
[20] |
DU J, WANG Z, LI Y, et al. Establishing WO3/g-C3N4 composite for “memory” photocatalytic activity and enhancement in photocatalytic degradation[J]. Catalysis Letters, 2019, 149(5): 1167-1173. doi: 10.1007/s10562-019-02711-z
|
[21] |
ZHENG F, ZHANG M, GUO M. Controllable preparation of WO3 nanorod arrays by hydrothermal method[J]. Thin Solid Films, 2013, 534: 45-53. doi: 10.1016/j.tsf.2013.01.102
|
[22] |
HAN X, XU D, AN L, et al. WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(10): 4845-4855. doi: 10.1016/j.ijhydene.2018.01.117
|
[23] |
GRIGIONI I, CORTI A, DOZZI M V, et al. Photoactivity and stability of WO3/BiVO4 photoanodes: Effects of the contact electrolyte and of Ni/Fe oxyhydroxide protection[J]. The Journal of Physical Chemistry C, 2018, 122(25): 13969-13978. doi: 10.1021/acs.jpcc.8b01112
|
[24] |
SUN M, ZHOU Y, YU T, et al. Synthesis of g-C3N4/WO3-carbon microsphere composites for photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10261-10276. doi: 10.1016/j.ijhydene.2022.01.103
|
[25] |
杨利伟, 刘丽君, 夏训峰, 等. pg-C3N4/BiOBr/Ag复合材料的制备及其光催化降解磺胺甲(口恶)唑[J]. 环境科学, 2021, 42(6): 2896-2907.
|