[1] |
中华人民共和国住房和城乡建设部. 2021年城乡建设统计年鉴[EB/OL]. [2023-09-10]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/index.html.
|
[2] |
尹海龙, 张惠瑾, 徐祖信. 城市排水系统智慧决策技术研究综述[J]. 同济大学学报 (自然科学版) , 2021, 49(10): 1426-1434.
|
[3] |
董传强, 成官文, 吴琼芳, 等. 基于模糊综合评价的贵州省县级城镇污水处理厂主要工艺评价[J]. 桂林理工大学学报, 2014, 34(1): 107-112.
|
[4] |
苏魏, 杜鹏飞, 陈吉宁. 城市污水处理厂运行稳定性评估方法初探[J]. 环境污染治理技术与设备, 2005(8): 84-87.
|
[5] |
孟繁宇, 樊庆锌, 纪楠, 等. 城市污水处理厂综合评价指标体系构建与应用研究[J]. 环境与可持续发展, 2012, 37(2): 84-90.
|
[6] |
张莹. 城市排水管网运行风险评估研究进展[J]. 城市道桥与防洪, 2022(6): 104-109+74+16.
|
[7] |
安关峰, 王和平, 周志勇. 《城镇公共排水管道检测与评估技术规程》DB44/T1025-2012主要内容解析[J]. 建筑监督检测与造价, 2012, 5(6): 25-29+35.
|
[8] |
李焕荣, 苏敷胜. 企业战略人力资源管理效能研究[J]. 工业技术经济, 2008, 27(12): 2-5.
|
[9] |
NIE L, LINDHOLM O, LINDHOLM G, et al. Impacts of climate change on urban drainage systems - a case study in Fredrikstad, Norway[J]. Urban Water Journal. 2009, 6(4): 323-332. doi: 10.1080/15730620802600924
|
[10] |
NILSEN V, LIER J A, BJERKHOLT J T, et al. Analysing urban floods and combined sewer overflows in a changing climate[J]. Journal of Water and Climate Change. 2011, 2(4): 260-271. doi: 10.2166/wcc.2011.042
|
[11] |
FONTANAZZA C M, FRENI G, LA LOGGIA G, et al. Uncertainty evaluation of design rainfall for urban flood risk analysis[J]. Water Science and Technology. 2011, 63(11): 2641-2650. doi: 10.2166/wst.2011.169
|
[12] |
MOEDERL M, KLEIDORFER M, RAUCH W. Influence of characteristics on combined sewer performance[J]. Water Science and Technology. 2012, 66(5): 1052-1060. doi: 10.2166/wst.2012.280
|
[13] |
SITZENFREI R, URICH C, MOEDERL M, et al. Assessing the efficiency of different CSO positions based on network graph characteristics[J]. Water Science and Technology. 2013, 67(7): 1574-1580. doi: 10.2166/wst.2013.029
|
[14] |
FU G, KAPELAN Z. Flood analysis of urban drainage systems: Probabilistic dependence structure of rainfall characteristics and fuzzy model parameters[J]. Journal of Hydroinformatics. 2013, 15(3): 687-699. doi: 10.2166/hydro.2012.160
|
[15] |
陈丰. 城市排水系统内涝与溢流控制性能评价与优化研究[D]. 北京: 清华大学, 2016.
|
[16] |
黄维. 城市排水管网水力模拟及内涝风险评估[D]. 广东: 华南理工大学, 2016.
|
[17] |
王迟. 基于事故树法的排水系统对城市内涝风险的评价研究[D]. 云南: 昆明理工大学, 2016.
|
[18] |
LEIMGRUBER J, STEFFELBAUER D B, KREBS G, et al. Selecting a series of storm events for a model-based assessment of combined sewer overflows[J]. Urban Water Journal. 2018, 15(5): 453-460. doi: 10.1080/1573062X.2018.1508601
|
[19] |
孙樱珊. 基于Mike Urban模型的北京市老城区合流制溢流污染控制研究[D]. 北京: 北京交通大学, 2018.
|
[20] |
陈伯南. 城市水系统适应强降水能力评估方法研究[D]. 北京: 北京建筑大学, 2019.
|
[21] |
沈才华, 王浩越, 褚明生. 构建内涝势冲量的海绵城市内涝程度评价方法[J]. 哈尔滨工业大学学报, 2019, 51(3): 193-200.
|
[22] |
黄曦涛, 李怀恩, 张瑜, 等. 基于PSR和AHP方法的西安市城市内涝脆弱性评价体系构建与脆弱度评估[J]. 自然灾害学报, 2019, 28(6): 167-175.
|
[23] |
姜章泽君. 基于熵值赋权与GIS的多情景内涝风险评估研究[D]. 江西: 南昌大学, 2020.
|
[24] |
ZHANG D D, SHEN J Q, LIU P F, et al. Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights[J]. International Journal of Environmental Research and Public Health, 2020, 17 (6) .
|
[25] |
蔡甜, 王佳. 排水模型和GIS模糊综合评价在内涝风险评估中的应用[J]. 中国给水排水, 2021, 37(11): 117-124.
|
[26] |
CAI Z, LI D, DENG L. Risk evaluation of urban rainwater system waterlogging based on neural network and dynamic hydraulic model[J]. Journal of Intelligent & Fuzzy Systems. 2020, 39(4): 5661-5671.
|
[27] |
KLEINER Y, RAJANI B, SADIQ R. Failure risk management of buried infrastructure using fuzzy-based techniques[J]. Journal of Water Supply Research and Technology-Aqua. 2006, 55(2): 81-94. doi: 10.2166/aqua.2006.075
|
[28] |
HOSSEINI S M, GHASEMI A. Hydraulic performance analysis of sewer systems with uncertain parameters[J]. Journal of Hydroinformatics. 2012, 14(3): 682-696. doi: 10.2166/hydro.2011.129
|
[29] |
SYACHRANI S, JEONG H D, CHUNG C S. Advanced criticality assessment method for sewer pipeline assets[J]. Water Science and Technology. 2013, 67(6): 1302-1309. doi: 10.2166/wst.2013.003
|
[30] |
龙浩, 李翠梅. 城市雨水管网系统脆弱性评价[J]. 深圳大学学报 (理工版) , 2014, 31(6): 593-599.
|
[31] |
杨秋侠, 赵瑞垠. 基于网络最大流的城市雨水管网系统脆弱性评价[J]. 系统工程理论与实践, 2018, 38(11): 2987-2992.
|
[32] |
赵瑞垠. 城市雨水管网系统脆弱性评价及脆弱管段判定[D]. 陕西: 西安建筑科技大学, 2018.
|
[33] |
张弛. 基于GIS与SWMM的城市雨水管线承载力评价与优化[D]. 陕西: 西安建筑科技大学, 2019.
|
[34] |
郑茂辉, 刘少非, 柳娅楠, 等. 基于粒子群优化极限学习机的排水管结构状况评价[J]. 同济大学学报 (自然科学版) , 2020, 48(4): 513-516+51.
|
[35] |
OKWORI E, VIKLANDER M, HEDSTROM A. Performance assessment of Swedish sewer pipe networks using pipe blockage and other associated performance indicators[J]. H2open Journal. 2020, 3(1): 46-57. doi: 10.2166/h2oj.2020.027
|
[36] |
GHAVAMI S M, BORZOOEI Z, MALEKI J. An effective approach for assessing risk of failure in urban sewer pipelines using a combination of GIS and AHP-DEA[J]. Process Safety and Environmental Protection. 2020, 133: 275-285. doi: 10.1016/j.psep.2019.10.036
|
[37] |
杨利伟, 邢雯雯, 张莉平, 等. 基于GA优化BP神经网络模型的污水管道系统健康状况评估[J]. 给水排水, 2021, 57(9): 123-131.
|
[38] |
邢雯雯. 基于GA-BP神经网络模型的排水管道系统健康状况评估[D]. 陕西: 长安大学, 2021.
|
[39] |
刘耀台. 城市排水管网模拟评价与径流控制方案优化[D]. 黑龙江: 哈尔滨工业大学, 2021.
|
[40] |
马晴晴, 吴珊, 王昊, 等. 雨水管网健康度评价与应用[J]. 水利水电技术 (中英文) , 2022, 53(3): 195-204.
|
[41] |
LIANG X, HE J, WEN W, et al. Drainage Capacity Evaluation of Sewer Networks Based on Comprehensive Hydraulic Performance Index and Its Application[J]. China Water & Wastewater. 2022, 38(22): 22-27.
|
[42] |
JIN H, JIN X, JIN J, et al. Performance Assessment Framework for Reinforced Concrete Pipes in Rainwater Drainage System Using a Combined Weights-Fuzzy Theory[J]. Journal of Performance of Constructed Facilities, 2021, 35 (2) .
|
[43] |
WANG Z, YANG Y, WANG H, et al. A Comprehensive Failure Risk Analysis of Drainage Pipes Utilizing Fuzzy Failure Mode and Effect Analysis and Evidential Reasoning[J]. Buildings, 2023, 13 (3) .
|
[44] |
HE F, CHENG S, ZHU J. Enhancing the Vulnerability Assessment of Rainwater Pipe Networks: An Advanced Fuzzy Borda Combination Evaluation Approach[J]. Buildings, 2023, 13 (6) .
|
[45] |
程永前, 宋乾武, 张玥, 等. 排水管网规划评价指标体系构建及分形维数应用[J]. 环境科学研究, 2011, 24(4): 446-451.
|
[46] |
程永前, 张玥, 宋乾武, 等. 分形维数在城市排水管网规划中的应用[J]. 环境科学研究, 2012, 25(1): 89-94.
|
[47] |
BEN TAGHEROUIT W, BENNIS S, BENGASSEM J. A Fuzzy Expert System for Prioritizing Rehabilitation of Sewer Networks[J]. Computer-Aided Civil and Infrastructure Engineering. 2011, 26(2): 146-152. doi: 10.1111/j.1467-8667.2010.00673.x
|
[48] |
CARRICO N, COVAS D I C, CEU ALMEIDA M, et al. Prioritization of rehabilitation interventions for urban water assets using multiple criteria decision-aid methods[J]. Water Science and Technology. 2012, 66(5): 1007-1014. doi: 10.2166/wst.2012.274
|
[49] |
杨文健, 李婷婷. 深圳特区内排水管网运营绩效评价研究与应用[J]. 建筑节能, 2016, 44(3): 64-67+71.
|
[50] |
李晓静, 陈勇, 胡本刚, 等. 城市地下排水管道评价体系探究——以渭南市为例[J]. 测绘, 2018, 41(5): 208-213.
|
[51] |
YOUNG J S, SUHO B. Evaluating the Efficiency of Public Sewer Systems in Korean Local Governments: Focusing on Economies of Scale, Density, and Scope[J]. The Korean Journal of Local Public Enterprises. 2017, 13(2): 1-28. doi: 10.24020/kjlpe.2017.13.2.1
|
[52] |
LEE J, CHUNG G, PARK H, et al. Evaluation of the Structure of Urban Stormwater Pipe Network Using Drainage Density[J]. Water, 2018, 10 (10) .
|
[53] |
李琳, 姚娟. 乌鲁木齐市政排水管网建设效应评价体系研究[J]. 化工管理, 2019(36): 103-104.
|
[54] |
ANANDA J. Assessing the operational efficiency of wastewater services whilst accounting for data uncertainty and service quality: a semi-parametric approach[J]. Water International. 2020, 45(7-8): 921-944. doi: 10.1080/02508060.2020.1786650
|
[55] |
SALMAN B, SALEM O. Risk Assessment of Wastewater Collection Lines Using Failure Models and Criticality Ratings[J]. Journal of Pipeline Systems Engineering and Practice. 2012, 3(3): 68-76. doi: 10.1061/(ASCE)PS.1949-1204.0000100
|
[56] |
BAAH K, DUBEY B, HARVEY R, et al. A risk-based approach to sanitary sewer pipe asset management[J]. Science of the Total Environment. 2015, 505: 1011-1017. doi: 10.1016/j.scitotenv.2014.10.040
|
[57] |
徐得潜, 卫尤澜. 基于AHM-可拓评价法的城市雨水管道风险评估[J]. 水电能源科学, 2019, 37(9): 92-95.
|
[58] |
徐得潜, 张倩. 基于AHP-GRA的合流制污水管道风险评估[J]. 安全与环境学报, 2019, 19(4): 1149-1154.
|
[59] |
张倩. 城市污水管道风险评估与污水泵站优化运行研究[D]. 安徽: 合肥工业大学, 2019.
|
[60] |
王智恺. 城市市政排水管网运行安全风险评估及工程示范[D]. 天津: 天津大学, 2019.
|
[61] |
刘威, 董婉琪. 基于AHP-熵权法组合赋权的排水管网风险评估方法研究[J]. 安全与环境学报, 2021, 21(3): 949-956.
|
[62] |
巴振宁, 匡田, 梁建文, 等. 城市排水管网风险评估研究[J]. 市政技术, 2021, 39(1): 90-93.
|
[63] |
BA Z N, FU J S, LIANG J W, et al. Risk Assessment Method of Drainage Network Operation Based on Fuzzy Comprehensive Evaluation Combined with Analytic Network Process[J]. Journal of Pipeline Systems Engineering and Practice, 2021, 12 (2) .
|
[64] |
王黎明, 孙钰. 基于主成分分析的城市排水系统供求协调度研究[J]. 天津经济, 2014(11): 48-51.
|
[65] |
建娜, 胡玉婷, 肖雪莹. 城镇排水系统量化指标体系研究[J]. 重庆工商大学学报 (自然科学版) , 2015, 32(10): 22-27.
|
[66] |
冷雪. 城镇排水管网系统运行效能评价体系研究[D]. 湖南: 湖南大学, 2017.
|
[67] |
王志杰, 周平, 刘川昆, 等. 海绵城市潜力评估方法及地下排水系统[J]. 哈尔滨工业大学学报, 2018, 50(3): 118-127.
|
[68] |
梁珊, 刘毅, 董欣. 中国排水系统现状及综合评价与未来政策建议[J]. 给水排水, 2018, 54(5): 132-140.
|
[69] |
NAM S N, NGUYEN T T, OH J. Performance Indicators Framework for Assessment of a Sanitary Sewer System Using the Analytic Hierarchy Process (AHP) [J]. Sustainability, 2019, 11 (10) .
|
[70] |
邓玉莲. 城市排水管网状态和运行效能评估方法的研究与应用[D]. 北京: 北京建筑大学, 2021.
|
[71] |
王俊岭, 熊玉华, 张现国, 等. 基于AHP-模糊综合评价法的城市排水管网状态和运行效能评价——以淮安市淮安区为例[J]. 环境工程技术学报, 2022, 12(4): 1162-1169.
|
[72] |
李晴, 曾维华, 唐小翕, 等. 城市排水系统运行状态评价与调控方案优选: 以昆明市为例[C]//中国环境科学学会环境工程分会. 中国环境科学学会2022年科学技术年会--环境工程技术创新与应用分会场论文集 (四) . 南昌, 2022: 806-813.
|
[73] |
王金丽, 孙永利, 郑兴灿, 等. 城市绿色排水系统内涵与规划评价技术研究[J]. 中国给水排水, 2022, 38(16): 16-23.
|
[74] |
黄悦, 刘广奇. 我国城镇排水系统综合评价及时空分异特征[J]. 中国给水排水, 2023, 39(2): 26-31.
|
[75] |
付意成, 魏传江, 王启猛, 等. 区域洪灾风险评价体系研究[J]. 灾害学, 2009, 24(3): 27-32.
|
[76] |
何俊超, 李明明, 刘睿, 等. 国内外合流制溢流污染管控体系研究[J]. 环境工程, 2021, 39(4): 42-49.
|
[77] |
刘徽, 王帅, 杨伟卫, 等. 基于多因子分级加权指数和法的城市洪涝灾害风险评价[J]. 冶金管理, 2022(5): 106-108.
|
[78] |
刘妍, 司海燕, 杨泽运, 等. 智慧城市内涝灾害评估体系构建[J]. 测绘工程, 2022, 31(4): 57-66.
|
[79] |
杨正, 车伍, 赵杨. 城市“合改分”与合流制溢流控制的总体策略与科学决策[J]. 中国给水排水, 2020, 36(14): 46-55.
|
[80] |
MATOS R C, A. ; DUARTE, P. ; ASHLEY, R. ; MOLINARI, A. ; SCHULZ, A. Performance Indicators for Wastewater Services[M]. London, UK: IWA, 2003.
|
[81] |
DANILENKO A B, C. ; MACHEVE, B. ; MOFITT, L. The IBNET Water Supply and Sanitation Blue Book 2014[M]. Washington, DC, USA: World Bank, 2014.
|
[82] |
OFWAT. Key Performance Indicators—Guidance[M]. Birmingham, UK: Water Services Regulation Authority, 2013.
|
[83] |
EPA U S. Guide for Evaluation Capacity, Management, Operation, and Maintenance (CMOM) Programs at Sanitary Sewer Collection Systems[M]. Cincinnati, OH, USA: United States Environmental Protection Agency, 2005.
|
[84] |
AWWA. Benchmarking Performance Indicators for Water and Wastewater Utilities–2013 Survey Data and Analyses Report[M]. Denver, CO, USA: American Water Works Association, 2015.
|
[85] |
廖青桃, 谭琼, 时珍宝, 等. 城市污水处理厂厂网联动平稳输送运行优化研究[J]. 给水排水, 2016, 52(12): 20-24.
|
[86] |
SAATY T L. HOW TO MAKE A DECISION - THE ANALYTIC HIERARCHY PROCESS[J]. European Journal of Operational Research. 1990, 48(1): 9-26. doi: 10.1016/0377-2217(90)90057-I
|
[87] |
HO W, MA X. The state-of-the-art integrations and applications of the analytic hierarchy process[J]. European Journal of Operational Research. 2018, 267(2): 399-414. doi: 10.1016/j.ejor.2017.09.007
|
[88] |
程乾生. 层次分析法AHP和属性层次模型AHM[J]. 系统工程理论与实践, 1997(11): 26-29.
|
[89] |
程乾生. 属性层次模型AHM——一种新的无结构决策方法[J]. 北京大学学报 (自然科学版) , 1998(1): 12-16.
|