[1] 贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4): 46-52.
[2] LI J, WANG J. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946. doi: 10.1016/j.jclepro.2019.117946
[3] 常纪文, 杜根杰, 杜建磊, 等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8): 13-17. doi: 10.3969/j.issn.1006-5377.2022.08.024
[4] 王栋民, 左彦峰, 李俏, 等. 煤矸石的矿物学特征及建材资源化利用[J]. 砖瓦, 2006(6): 17-23. doi: 10.16001/j.cnki.1001-6945.2006.06.005
[5] 中华人民共和国国务院办公厅. 煤矸石综合利用管理办法 (2014年修订版) [EB/OL] [2023-09-10].https: //www.gov.cn/zhengce/2014-12/22/content_5713236.htm.
[6] 中华人民共和国国家发展改革委办公厅 工业和信息化部办公厅. 关于推进大宗固体废弃物综合利用产业集聚发展的通知[EB/OL ]. [2023-09-10].https: //www.ndrc.gov.cn/fzggw/jgsj/hzs/sjdt/201901/t20190116_1130638.html.
[7] 中华人民共和国国家发展改革委办公厅. 关于加快推进大宗固体废弃物综合利用示范建设的通知[EB/OL ]. [2023-09-10].https: //www.ndrc.gov.cn/xxgk/zcfb/tz/202201/t20220104_1311402_ext.html.
[8] 王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探, 2022, 50(10): 54-66. doi: 10.12363/issn.1001-1986.21.11.0614
[9] HONG P, LI Y, JIA X L. Experimental study on thermoelectric generation device based on accumulated temperature waste heat of coal gangue[J]. Energy Reports, 2022, 8(7): 210-219.
[10] HU Z Q, LIU S G, GONG Y L. Evaluation of soil quality and maize growth in different profiles of reclaimed land with coal gangue filling[J]. Land, 2021, 10(12): 1307. doi: 10.3390/land10121307
[11] HAN X N, DONG Y, GENG Y Q, et al. Influence of coal gangue mulching with various thicknesses and particle sizes on soil water characteristics[J]. Scientific Reports, 2021, 11(1): 15368. doi: 10.1038/s41598-021-94806-0
[12] 秦琪焜, 方健梅, 王根柱, 等. 煤矸石与城市污泥混合制备植生基质的试验研究[J]. 煤炭科学技术, 2022, 50(7): 304-314. doi: 10.13199/j.cnki.cst.2021-0619
[13] WANG Y M, HUANG Y C, HAO Y X. Experimental study and application of rheological properties of coal gangue-fly ash backfill slurry[J]. Processes, 2020, 8(3): 284. doi: 10.3390/pr8030284
[14] 邱继生, 程坤, 张如意, 等. 煤矸石粉对矸石基绿色胶结充填体性能的影响[J]. 矿业研究与开发, 2022, 42(3): 60-65.
[15] YANG X Y, ZHANG Y, LI Z H. Embankment displacement PLAXIS simulation and microstructural behavior of treated-coal gangue[J]. Minerals, 2020, 10(3): 218. doi: 10.3390/min10030218
[16] ZHANG Y, YANG X Y, TIGHE S. Evaluation of mechanical properties and microscopic structure of coal gangue after aqueous solution treatment[J]. Materials (Basel) , 2019, 12(19): 3207. doi: 10.3390/ma12193207
[17] GUAN J F, LU M, YAO X H, et al. An Experimental study of the road performance of cement stabilized coal gangue[J]. Crystals, 2021, 11(8): 993. doi: 10.3390/cryst11080993
[18] ZHANG X R, TIAN Y R, LIU J F, et al. Evaluation of modified permeable pavement systems with coal gangue to remove typical runoff pollutants under simulated rainfall[J]. Water Science and Technology, 2021, 83(2): 381-395. doi: 10.2166/wst.2020.574
[19] YE T T, MIN X Y, JIANG X Z, et al. Adsorption and desorption of coal gangue toward available phosphorus through calcium-modification with different Ph[J]. Minerals, 2022, 12(7): 801. doi: 10.3390/min12070801
[20] LI L H, LONG G C, BAI C N, et al. Utilization of coal gangue aggregate for railway roadbed construction in practice[J]. Sustainability, 2020, 12(11): 4583. doi: 10.3390/su12114583
[21] WANG A G, LIU P, MO L W, et al. Mechanism of thermal activation on granular coal gangue and its impact on the performance of cement mortars[J]. Journal of Building Engineering, 2022, 45: 103616. doi: 10.1016/j.jobe.2021.103616
[22] SHEN L L, ZHANG J X, LAI W A, et al. Microstructure and mechanical behaviors of coal gangue - Coal slime water backfill cementitious materials[J]. Journal of Materials Research and Technology, 2022, 20: 3772-3783. doi: 10.1016/j.jmrt.2022.08.089
[23] HAO Y, GUO X N, YAO X H, et al. Using Chinese coal gangue as an ecological aggregate and its modification: A Review[J]. Materials (Basel) , 2022, 15(13): 4995.
[24] ZHU X X, GUO Z H, YANG W, et al. Durability of concrete with coal gasification lag and coal gangue powder[J]. Frontiers in Materials, 2022, 8: 791178. doi: 10.3389/fmats.2021.791178
[25] GAO S, ZHANG S M, GUO L H. Application of coal gangue as a coarse aggregate in green concrete production: A Review[J]. Materials (Basel) , 2021, 14(22): 6803. doi: 10.3390/ma14226803
[26] WANG Y S, QIU J P, DENG W, et al. Factors affecting brittleness behavior of coal-gangue ceramsite lightweight aggregate concrete[J]. Frontiers in Materials, 2020, 7: 554718. doi: 10.3389/fmats.2020.554718
[27] DONG Z C, XIA J W, FAN C, et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar[J]. Construction and Building Materials, 2015, 100: 63-69. doi: 10.1016/j.conbuildmat.2015.09.050
[28] GUAN X, CHEN J X, ZHU M Y, et al. Performance of microwave-activated coal gangue powder as auxiliary cementitious material[J]. Journal of Materials Research and Technology, 2021, 14: 2799-2811. doi: 10.1016/j.jmrt.2021.08.106
[29] ZHANG D M, SUN F J, LIU T T, et al. Study on preparation of coal gangue-based geopolymer concrete and mechanical properties[J]. Advances in Civil Engineering, 2021, 2021: 1-13.
[30] 罗凯, 李军, 曾计生, 等. 活化煤矸石-石灰石复合水泥的性能研究[J]. 武汉理工大学学报, 2022, 44(7): 10-15. doi: 10.3963/j.issn.1671-4431.2022.07.002
[31] 杨秋宁, 景严谊, 张东生. 纤维及矿物掺合料对煤矸石混凝土力学性能的改性研究[J]. 功能材料, 2022, 53(7): 7150-7156.
[32] YANG J K, LU H J, ZHANG X, et al. An experimental study on solidifying municipal sewage sludge through skeleton building using cement and coal gangue[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-13.
[33] ZHANG W Q, DONG C W, HUANG P, et al. Experimental study on the characteristics of activated coal gangue and coal gangue-based geopolymer[J]. Energies, 2020, 13(10): 2504. doi: 10.3390/en13102504
[34] CHENG Y, MA H Q, CHENG H Y, et al. Preparation and characterization of coal gangue geopolymers[J]. Construction and Building Materials, 2018, 187: 318-26. doi: 10.1016/j.conbuildmat.2018.07.220
[35] HUANG G D, JI Y S, LI J, et al. Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content[J]. Construction and Building Materials, 2018, 166: 760-768. doi: 10.1016/j.conbuildmat.2018.02.005
[36] GENG J J, ZHOU M, ZHANG T, et al. Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation[J]. Materials and Structures, 2016, 50(2): 109.
[37] HAN R C, GUO X N, GUAN J F, et al. Activation mechanism of coal gangue and its impact on the properties of geopolymers: A Review[J]. Polymers (Basel) , 2022, 14(18): 3861. doi: 10.3390/polym14183861
[38] YANG X Y, ZHANG Y, LIN C. Compressive and flexural properties of ultra-fine coal gangue-based geopolymer gels and microscopic mechanism analysis[J]. Gels, 2022, 8(3): 145. doi: 10.3390/gels8030145
[39] YANG X Y, ZHANG Y, LIN C. Microstructure analysis and effects of single and mixed activators on setting time and strength of coal gangue-based geopolymers[J]. Gels, 2022, 8(3): 195. doi: 10.3390/gels8030195
[40] GUAN H B, YU J T, UMUHUZA KIBUGENZA A S, et al. Preparation of coal gangue ceramsite high-strength concrete and investigation of its physico-mechanical properties[J]. Scientific Reports, 2022, 12(1): 16369. doi: 10.1038/s41598-022-20940-y
[41] DANG W, HE H Y. Glass-ceramics fabricated by efficiently utilizing coal gangue[J]. Journal of Asian Ceramic Societies, 2020, 8(2): 365-372. doi: 10.1080/21870764.2020.1743417
[42] WANG C L, REN Z Z, ZHENG Y C, et al. Effects of heat treatment system on mechanical strength and crystallinity of CaO-MgO- Al2O3-SiO2 glass-ceramics containing coal gangue and iron ore tailings[J]. Journal of New Materials for Electrochemical Systems, 2020, 22(2): 70-78. doi: 10.14447/jnmes.v22i2.a02
[43] 湛玲丽, 韩利雄, 李璟玮, 等. 高掺量煤矸石固废微晶玻璃结构与性能研究[J]. 硅酸盐通报, 2022, 41(4): 1124-1132. doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204002
[44] 罗冰, 张淑君, 石丽, 等. 煤矸石直接烧结法制备微晶玻璃[J]. 矿产保护与利用, 2022, 42(4): 113-120.
[45] LI H, ZHENG F, WANG J, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390: 124513. doi: 10.1016/j.cej.2020.124513
[46] LI H, LI M J, ZHENG F, et al. Efficient removal of water pollutants by hierarchical porous zeolite-activated carbon prepared from coal gangue and bamboo[J]. Journal of Cleaner Production, 2021, 325: 129322. doi: 10.1016/j.jclepro.2021.129322
[47] ZHANG M S, WANG X L. Preparation of a gangue-based X-type zeolite molecular sieve as a multiphase Fenton Catalyst and its catalytic performance[J]. ACS Omega, 2021, 6(28): 18414-18425. doi: 10.1021/acsomega.1c02469
[48] KONG D S, JIANG R L. Preparation of NaA zeolite from high iron and quartz contents coal gangue by acid leaching—alkali melting activation and hydrothermal synthesis[J]. Crystals, 2021, 11(10): 1198. doi: 10.3390/cryst11101198
[49] 王万军, 赵彦巧. 青峰煤矸石矿物学特征及分子筛制备研究[J]. 矿产保护与利用, 2006(6): 18-23. doi: 10.3969/j.issn.1001-0076.2006.06.005
[50] GU J, JI C, FU R, et al. Robust SiO2-Al2O3/Agarose composite aerogel beads with outstanding thermal insulation based on coal gangue[J]. Gels, 2022, 8(3): 165. doi: 10.3390/gels8030165
[51] WEI J, ZHU P H, SUN H. Ambient-dried silica aerogel powders derived from coal gangue by using one-pot method[J]. Materials (Basel) , 2022, 15(4): 1454. doi: 10.3390/ma15041454
[52] 郝名远, 陈欢乐, 李淑敏, 等. 煤矸石制备气凝胶研究进展[J]. 矿产保护与利用, 2022, 42(1): 172-178.
[53] YANG Q C, ZHANG F, DENG X J, et al. Extraction of alumina from alumina rich coal gangue by a hydro-chemical process[J]. Royal Society Open Science, 2020, 7(4): 192132. doi: 10.1098/rsos.192132
[54] 范剑明. 高铝煤矸石铝硅分级提取实验研究[J]. 无机盐工业, 2019, 51(11): 65-68. doi: 10.11962/1006-4990.2019-0017
[55] KONG D S, ZHOU Z H, JIANG R, et al. Extraction of aluminum and iron ions from coal gangue by acid leaching and kinetic analyses[J]. Minerals, 2022, 12(2): 215. doi: 10.3390/min12020215
[56] 耿学文, 马鸿文, 苏双青, 等. 高铝煤矸石脱硅滤饼碱石灰烧结法制备氢氧化铝的实验研究[J]. 矿物岩石地球化学通报, 2012, 31(6): 635-639.
[57] 滕英跃, 张永锋, 白杰, 等. 高铝煤矸石制备超细氧化铝和硅酸钠联产工艺[J]. 化工进展, 2011, 30(2): 456-462.
[58] ZHANG K N, ZHANG H, LIU L S, et al. Dispersibility of kaolinite-rich coal gangue in rubber matrix and the mechanical properties and thermal stability of the composites[J]. Minerals, 2021, 11(12): 1388. doi: 10.3390/min11121388
[59] HUANG Y L, LI J M, SONG T Q, et al. Microstructure of coal gangue and precipitation of heavy metal elements[J]. Journal of Spectroscopy, 2017, 2017: 1-9.
[60] 贾鲁涛, 吴倩云. 煤矸石特性及其资源化综合利用现状[J]. 煤炭技术, 2019, 38(11): 37-40. doi: 10.13301/j.cnki.ct.2019.11.014
[61] XIE M Z, LIU F Q, ZHAO H L, et al. Mineral phase transformation in coal gangue by high temperature calcination and high-efficiency separation of alumina and silica minerals[J]. Journal of Materials Research and Technology, 2021, 14: 2281-2288. doi: 10.1016/j.jmrt.2021.07.129
[62] 中华人民共和国六盘水市人民政府办公室. 推进煤矸石消纳为煤炭产业可持续发展解困的建议[EB/OL ]. [2023-09-10]. http://www.gzlps.gov.cn/hdjl/jytabl/zxta/zxwyta/202309/t20230906_82326319.html.
[63] 惠鹏岳. 煤矸石的特性分析及综合利用研究[J]. 内蒙古煤炭经济, 2023, 366(1): 70-72.
[64] 宋欢, 刘利波, 徐宏祥. 准格尔露天矿高品质煅烧高岭土分选工艺研究[J]. 煤炭加工与综合利用, 2021(11): 81-5+91.
[65] 范剑明. 准格尔煤田高铝煤矸石矿物特征及热活性研究[J]. 煤炭加工与综合利用, 2017(11): 74-7+84+8. doi: 10.16200/j.cnki.11-2627/td.2017.11.021
[66] 谭雪莲, 沈怡青, 赵韩娣. 我国粉煤灰、煤矸石综合利用政策分析[J]. 粉煤灰综合利用, 2014(1): 49-53. doi: 10.3969/j.issn.1005-8249.2014.01.015
[67] 吴滨, 杨敏英. 我国粉煤灰、煤矸石综合利用技术经济政策分析[J]. 中国能源, 2012, 34(11): 8-11+45. doi: 10.3969/j.issn.1003-2355.2012.11.002
[68] 民建韶关市委员会. 推进煤矸石资源综合利用 推动韶关绿色发展[N]. 韶关日报, 2022-07-20 (A04) .
[69] 李鹏, 夏元鹏, 张立魁, 等. 煤矸石综合利用产业政策和发展方向[J]. 陕西地质, 2021, 39(2): 96-101. doi: 10.3969/j.issn.1001-6996.2021.02.013
[70] 青方. 国外煤矸石处理及其经济效益[J]. 河北煤炭, 1990(4): 53-55.
[71] 鲍丽萍. 鄂尔多斯市煤矸石综合利用路径研究[J]. 北方经济, 2023, 425(4): 60-63. doi: 10.3969/j.issn.1007-3590.2023.04.016
[72] 张伟辉. 煤矸石综合利用存在的问题及对策分析[J]. 能源与节能, 2021(2): 101-102. doi: 10.16643/j.cnki.14-1360/td.2021.02.045
[73] 李贞, 王俊章, 申丽明, 等. 煤矸石物化成分对其资源化利用的影响[J]. 洁净煤技术, 2020, 26(6): 34-44. doi: 10.13226/j.issn.1006-6772.20021801
[74] ZHANG Y L, LING T-C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials – A review[J]. Construction and Building Materials, 2020, 234: 117424. doi: 10.1016/j.conbuildmat.2019.117424
[75] KONG D S, ZHOU Z H, SONG S J, et al. Preparation of Poly Aluminum-Ferric Chloride (PAFC) coagulant by extracting aluminum and iron ions from high iron content coal gangue[J]. Materials (Basel) , 2022, 15(6): 2253. doi: 10.3390/ma15062253
[76] LV B, ZHAO Z Y, DENG X W, et al. Sustainable and clean utilization of coal gangue: activation and preparation of silicon fertilizer[J]. Journal of Material Cycles and Waste Management, 2022, 24(4): 1579-1590. doi: 10.1007/s10163-022-01426-5
[77] ZHANG H, ZHAO R B, LIU Z L, et al. Enhanced adsorption properties of polyoxometalates/coal gangue composite: The key role of kaolinite-rich coal gangue[J]. Applied Clay Science, 2023, 231: 106730. doi: 10.1016/j.clay.2022.106730
[78] WANG J, FANG L, CHENG F Q, et al. Hydrothermal synthesis of SBA-15 using sodium silicate derived from coal gangue[J]. Journal of Nanomaterials, 2013, 2013: 1-6.
[79] 李宏伟, 燕可洲, 文朝璐, 等. 煤矸石制备活性炭-介孔硅复合材料及其过程物相转变[J/OL]. 煤炭科学技术: 1-11.
[80] ZHANG X, LI M, SU Y G, et al. A novel and green strategy for efficient removing Cr (VI) by modified kaolinite-rich coal gangue[J]. Applied Clay Science, 2021, 211: 106208. doi: 10.1016/j.clay.2021.106208
[81] ZHAO R B, ZHANG X, SU Y G, et al. Unprecedented catalytic activity of coal gangue toward environmental remediation: Key role of hydroxyl groups[J]. Chemical Engineering Journal, 2020, 380: 122432. doi: 10.1016/j.cej.2019.122432
[82] 解传娣, 张雷. 利用煤矸石和废玻璃制备发泡陶瓷材料及其性能的研究[J]. 中国陶瓷, 2022, 58(5): 51-56+64.
[83] 赵绘婷, 董龙浩, 谢梅竹, 等. 以煤矸石制备发泡陶瓷的研究[J]. 中国陶瓷工业, 2022, 29(3): 26-30. doi: 10.13958/j.cnki.ztcg.2022.03.006