[1] |
JAGTAP S, YENKIE M K, LABHSETWAR N, et al. Fluoride in drinking water and defluoridation of water[J]. Chemical Reviews, 2012, 112(4): 2454-2466. doi: 10.1021/cr2002855
|
[2] |
薛英文, 杨开, 梅健. 混凝沉淀法除氟影响因素试验研究[J]. 武汉大学学报(工学版), 2010, 43(4): 477-480.
|
[3] |
宿延涛, 勾阳飞, 王海珍, 等. GW-F90树脂的除氟性能研究[J]. 铀矿冶, 2023, 42(2): 59-63.
|
[4] |
朱殿梅, 邵波霖, 钟可意, 等. 镧改性钢渣对水中氟离子的吸附性能[J]. 环境工程学报, 2023, 17(4): 1167-1176.
|
[5] |
HALDAR D, DUARAH P, PURKAIT M K. MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review[J]. Chemosphere, 2020, 251: 126388. doi: 10.1016/j.chemosphere.2020.126388
|
[6] |
徐志颖, 李晔, 刘冬雪, 等. 载镧活性氧化铝的除氟及再生性能研究[J]. 化学工程, 2022, 50(2): 1-4.
|
[7] |
GUIZA S, BROUERS F, BAGANE M. Fluoride removal from aqueous solution by montmorillonite clay: Kinetics and equilibrium modeling using new generalized fractal equation[J]. Environmental Technology & Innovation, 2021, 21: 101187.
|
[8] |
TOLKOU A K, TRIKALIOTI S, MAKROGIANNI O, et al. Magnesium modified activated carbons derived from coconut shells for the removal of fluoride from water[J]. Sustainable Chemistry and Pharmacy, 2023, 31: 100898. doi: 10.1016/j.scp.2022.100898
|
[9] |
李舒舒, 宋明珊, 童琳, 等. 负载铝铈污泥生物炭对模拟废水的强化除氟作用[J]. 环境工程学报, 2023, 17(3): 750-760.
|
[10] |
ZHANG H, WAN K, YAN J, et al. The function of doping nitrogen on removing fluoride with decomposing La-MOF-NH2: Density functional theory calculation and experiments[J]. Journal of Environmental Sciences, 2024, 135: 118-29. doi: 10.1016/j.jes.2023.01.015
|
[11] |
TANG X, ZHOU C, XIA W, et al. Recent advances in metal–organic framework-based materials for removal of fluoride in water: Performance, mechanism, and potential practical application[J]. Chemical Engineering Journal, 2022, 446: 137299. doi: 10.1016/j.cej.2022.137299
|
[12] |
JEYASEELAN A, VISWANATHAN N. Facile fabrication of zirconium–organic framework–embedded chitosan hybrid spheres for efficient fluoride adsorption[J]. ACS ES& T Water, 2022, 2(1): 52-62.
|
[13] |
武鑫霞, 曹占平, 苏婷, 等. Ce改性金属有机骨架材料对氟的吸附[J]. 复合材料学报, 2020, 37(10): 2636-2644. doi: 10.13801/j.cnki.fhclxb.20200225.003
|
[14] |
赵瑨云, 胡家朋, 刘瑞来, 等. La-金属有机骨架化合物的制备及其除氟性能研究[J]. 化学通报, 2021, 84(1): 75-80.
|
[15] |
JEYASEELAN A, VISWANATHAN N. Facile synthesis of tunable rare earth based metal organic frameworks for enhanced fluoride retentionJ][J]. Journal of Molecular Liquids, 2021, 326: 115163. doi: 10.1016/j.molliq.2020.115163
|
[16] |
HE J, XU Y, XIONG Z, et al. The enhanced removal of phosphate by structural defects and competitive fluoride adsorption on cerium-based adsorbent[J]. Chemosphere, 2020, 256: 127056. doi: 10.1016/j.chemosphere.2020.127056
|
[17] |
TANG X, XIA W, QU X, et al. Structure–performance correlation guided cerium-based metal–organic frameworks: Superior adsorbents for fluoride removal in water[J]. Chemosphere, 2023, 312: 137335. doi: 10.1016/j.chemosphere.2022.137335
|
[18] |
WANG B, ZENG Y, XIONG M, et al. Adsorption performance and mechanism of mesoporous carbon-doped Al2O3 adsorbent derived from NH2-MIL-53 (Al) for removing Cr(Ⅵ) and methyl orange from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110081. doi: 10.1016/j.jece.2023.110081
|
[19] |
HE J, XU Y, WANG W, et al. Ce(Ⅲ) nanocomposites by partial thermal decomposition of Ce-MOF for effective phosphate adsorption in a wide pH range[J]. Chemical Engineering Journal, 2020, 379: 122431. doi: 10.1016/j.cej.2019.122431
|
[20] |
CHEN G, GUO Z, ZHAO W, et al. Design of porous/hollow structured ceria by partial thermal decomposition of Ce-MOF and selective etching[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39594-39601.
|
[21] |
JEYASEELAN A, NAUSHAD M, AHAMAD T, et al. Fabrication of amino functionalized benzene-1, 4-dicarboxylic acid facilitated cerium based metal organic frameworks for efficient removal of fluoride from water environment[J]. Environmental Science:Water Research & Technology, 2021, 7(2): 384-395.
|
[22] |
TAO W, ZHONG H, PAN X, et al. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification[J]. Journal of Hazardous Materials, 2020, 384: 121373. doi: 10.1016/j.jhazmat.2019.121373
|
[23] |
GU Y, XIE D, MA Y, et al. Size modulation of zirconium-based metal organic frameworks for highly efficient phosphate remediation[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 32151-32160.
|
[24] |
ZHANG N, YANG X, YU X, et al. Al-1, 3, 5-benzenetricarboxylic metal–organic frameworks: A promising adsorbent for defluoridation of water with pH insensitivity and low aluminum residual[J]. Chemical Engineering Journal, 2014, 252: 220-229. doi: 10.1016/j.cej.2014.04.090
|
[25] |
CAI H, XU L, CHEN G, et al. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill[J]. Applied Surface Science, 2016, 375: 74-84. doi: 10.1016/j.apsusc.2016.03.005
|
[26] |
MAZLOOMI S, YOUSEFI M, NOURMORADI H, et al. Evaluation of phosphate removal from aqueous solution using metal organic framework; isotherm, kinetic and thermodynamic study[J]. Journal of Environmental Health Science and Engineering, 2019, 17(1): 209-218. doi: 10.1007/s40201-019-00341-6
|
[27] |
张钰卿, 刘佳, 许兵, 等. 含氟废水处理中的除氟吸附技术研究进展[J]. 净水技术, 2022, 41(5): 23-29. doi: 10.15890/j.cnki.jsjs.2022.05.004
|
[28] |
ALIASKARI M, SCHäFER A I. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater[J]. Water Research, 2021, 190: 116683. doi: 10.1016/j.watres.2020.116683
|