[1] |
FETANAT A, TAYEBI M. A picture fuzzy set-based decision support system for treatment technologies prioritization of petroleum refinery effluents: A circular water economy transition towards oil & gas industry[J]. Separation and Purification Technology, 2022, 303(1): 1-16.
|
[2] |
COELHO A, CASTRO A, DEZOTTI M, et al. Treatment of petroleum refinery sourwater by advanced oxidation processes[J]. Journal of Hazard Materials, 2006, 137(1): 178-184. doi: 10.1016/j.jhazmat.2006.01.051
|
[3] |
KARRAY F, ALOUI F, JEMLI M, et al. Pilot-scale petroleum refinery wastewaters treatment systems: Performance and microbial communities’ analysis[J]. Process Safety and Environmental Protection, 2020, 141(1): 73-82.
|
[4] |
JAFARINEJAD S, JIANG S. Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 10332-10336.
|
[5] |
ELNAAS M, ALHAIJA M, ALZUHAIR S. Evaluation of a three-step process for the treatment of petroleum refinery wastewater[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 56-62. doi: 10.1016/j.jece.2013.11.024
|
[6] |
ZHONG J, SUN X, WANG C. Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration[J]. Separation and Purification Technology, 2003, 32(1/2/3): 93-98.
|
[7] |
环境保护部. 石油炼制工业污染物排放标准: GB 31570-2015[S]. 北京: 中国环境科学出版社, 2015.
|
[8] |
宋佳宇, 张婷婷, 李立君, 等. 典型炼化废水微生物功能结构与主要致毒物质响应关系研究[J]. 环境科学研究, 2023, 36(5): 943-953. doi: 10.13198/j.issn.1001-6929.2023.02.04
|
[9] |
TURKAY O, INAN H, DIMOGLO A. Experimental and theoretical investigations of CuO-catalyzed ozonation of humic acid[J]. Separation and Purification Technology, 2014, 134(1): 110-116.
|
[10] |
CHEN K, WANG Y. The effects of Fe–Mn oxide and TiO2/α-Al2O3 on the formation of disinfection by-products in catalytic ozonation[J]. Chemical Engineering Journal, 2014, 253(1): 84-92.
|
[11] |
QI W, WANG J, QUAN X, et al. Catalytic ozonation by manganese, iron and cerium oxides on γ-Al2O3 pellets for the degradation of organic pollutants in continuous fixed-bed reactor[J]. Ozone: Science & Engineering, 2019, 42(2): 136-145.
|
[12] |
UDREA I, BRADU C. Ozonation of substituted phenols in aqueous solutions over CuO-Al2O3 catalyst[J]. Ozone: Science & Engineering, 2003, 25(4): 335-343.
|
[13] |
DAI Q, WANG J, CHEN J, et al. Ozonation catalyzed by cerium supported on activated carbon for the degradation of typical pharmaceutical wastewater[J]. Separation and Purification Technology, 2014, 127(1): 112-120.
|
[14] |
MARTINS R, QUINTA-FERREIRA R. Remediation of phenolic wastewaters by advanced oxidation processes (AOPs) at ambient conditions: Comparative studies[J]. Chemical Engineering Science, 2011, 66(14): 3243-3250. doi: 10.1016/j.ces.2011.02.023
|
[15] |
EINAGA H, FUTAMURA S. Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides[J]. Journal of Catalysis, 2004, 227(2): 304-312. doi: 10.1016/j.jcat.2004.07.029
|
[16] |
POCOSTALES P, ALVAREZ P, BELTRAN F. Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water[J]. Chemical Engineering Journal, 2011, 168(3): 1289-1295. doi: 10.1016/j.cej.2011.02.042
|
[17] |
REZAEI E, SOLTAN J, CHEN N, et al. Effect of noble metals on activity of MnO x/γ-alumina catalyst in catalytic ozonation of toluene[J]. Chemical Engineering Journal, 2013, 214(1): 219-228.
|
[18] |
KEYKAVOOS R, MANKIDY R, MA H, et al. Mineralization of bisphenol A by catalytic ozonation over alumina[J]. Separation and Purification Technology, 2013, 107(1): 310-317.
|
[19] |
胡映明, 王盼新, 付丽亚, 等. 不同制备方法对铝基催化剂臭氧催化氧化的效果研究[J]. 环境科学研究, 2022, 35(11): 2559-2567. doi: 10.13198/j.issn.1001-6929.2022.07.01
|
[20] |
LI M, FU L, DENG L, et al. A tailored and rapid approach for ozonation catalyst design[J]. Environmental Science and Ecotechnology, 2023, 15(1): 1-10.
|
[21] |
SREETHAWONG T, CHAVADEJ S. Color removal of distillery wastewater by ozonation in the absence and presence of immobilized iron oxide catalyst[J]. Journal of Hazardous Materials, 2008, 155(3): 486-493. doi: 10.1016/j.jhazmat.2007.11.091
|
[22] |
WU Z, ZHANG G, ZHANG R, et al. Insights into mechanism of catalytic ozonation over practicable mesoporous Mn-CeOx/γ-Al2O3 catalysts[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1943-1953.
|
[23] |
LI J, SONG W, YU Z, et al. Preparation of the Mn-Fe-Ce/γ-Al2O3 ternary catalyst and its catalytic performance in ozone treatment of dairy farming wastewater[J]. Arabian Journal of Chemistry, 2020, 13(2): 3724-3734. doi: 10.1016/j.arabjc.2020.01.006
|
[24] |
CHEN W, WESTERHOFF P, LEENHEER J, et al. Fluorescence excitatione emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1): 5701-5710.
|
[25] |
李敏, 付丽亚, 谭煜, 等. Mn-Ce/γ-Al2O3催化臭氧氧化深度处理石化废水中试研究[J]. 环境科学研究, 2021, 34(10): 2380-2388.
|
[26] |
LI Y, XU J, QIAN M, et al. The role of surface hydroxyl concentration on calcinated alumina in catalytic ozonation[J]. Environmental Science and Pollution Research, 2019, 26(15): 15373-15380. doi: 10.1007/s11356-019-04909-5
|
[27] |
YANG L, HU C, NIE Y L, et al. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide[J]. Environmental Science & Technology, 2009, 42(1): 2525-2529.
|
[28] |
ZHAO K, MA Y, LIN F, et al. Refractory organic compounds in coal chemical wastewater treatment by catalytic ozonation using Mn-Cu-Ce/Al2O3[J]. Environmental Science and Pollution Research, 2021, 28(30): 41504-41515. doi: 10.1007/s11356-021-13629-8
|
[29] |
NAWROCKI J, FIJOLEK L. Effect of aluminium oxide contaminants on the process of ozone decomposition in water[J]. Applied Catalysis B: Environmental, 2013, 142-143(1): 533-537.
|
[30] |
NIE R, LEI H, PAN S, et al. Core–shell structured CuO–ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96(1): 419-425.
|
[31] |
IKHLAQ A, BROWN D, KASPRZYK-HORDERN B. Mechanisms of catalytic ozonation on alumina and zeolites in water: formation of hydroxyl radicals[J]. Applied Catalysis B: Environmental, 2012, 123-124(1): 94-106.
|
[32] |
SHI Z, CHOW C, FABRIS R, et al. Evaluation of the impact of suspended particles on the UV absorbance at 254 nm (UV254) measurements using a submersible UV-Vis spectrophotometer[J]. Environmental Science and Pollution Research, 2020, 28(10): 12576-12586.
|
[33] |
FU L, WU C, ZHOU Y, et al. Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone, ozone H2O2, and ozonecatalyst[J]. Chemosphere, 2019, 233(1): 34-43.
|
[34] |
史振宇, 刘建伟, 王元月, 等. 混凝-臭氧催化氧化-曝气生物滤池处理工业园区污水[J]. 现代化工, 2019, 39(8): 203-209. doi: 10.16606/j.cnki.issn0253-4320.2019.08.042
|
[35] |
郑垒, 郑旭文, 汪晓军, 等. 一体式臭氧催化氧化-曝气生物滤池深度处理印染废水[J]. 中国给水排水, 2019, 35(22): 105-107. doi: 10.19853/j.zgjsps.1000-4602.2019.22.022
|